Title o	f the Course: ENGINEERING MATHEMATICS-III	L	Т	Р	Credits			
Course	e Code: UMCH0301	3	1		4			
Course	Course Pre-Requisite: Basic terminologies of differential equations, vector algebra, concepts of probability, rules and formulae of integration.							
Course	Course Description: This Course contains linear differential equations, vector calculus, Laplace transform, probability distributions, Fourier series and							
C	applications of partial differential equations							
1.	To develop abstract, logical and critical thinking and the ability upon their work.	ity to r	reflec	et criti	cally			
3.	 To study various manematical tools fike differential equations, integral transforms, vector calculus, probability and partial differential equations to devise engineering solutions for given situations. The student must be able to formulate a mathematical model of a real life and engineering problem, solve and interpret the solution in real world. 							
Course	e Outcomes:							
COs	After the completion of the course the student will be able to	Bloc	om's	Cogn Descrit	itive otor			
CO1	Solve linear differential equations with constants coefficients and apply them to realistic problems.	III						
CO2	Find directional derivatives and apply knowledge of vector differentiation to find curl and divergence of vector fields.	IV						
CO3	Evaluate Laplace transforms of given functions and use it to solve LDEs.	III						
CO4	Determine the defectiveness in items / products using probability distributions.	III						
CO5	Express the given function as Fourier series over the given interval.	III						
CO6	Solve the wave, heat equations analytically and Laplace equation numerically by Gauss – Siedel method	III						

CO-PO Mapping:

CO	a	b	c	d	e	f	g	h	i	j	k
CO1											
CO2											
CO3											
CO4											
CO4											
CO5											
CO6											

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks				
ISE 1	10				
MSE	30				
ISE 2	10				
ESE	50				
ISE 1 and ISE 2 are based on assignment/decla	ared test/quiz/seminar/Group Discuss	ions etc.			
MSE: Assessment is based on 50% of course c	MSE: Assessment is based on 50% of course content (Normally first three units)				
ESE: Assessment is based on 100% course cor	ntent with60-70% weightage for cours	se content			
(normally last three units) covered after MSE.					
Course Contents:					
Unit 1: Linear Differential Equations with (Constant Coefficients and Its	8 Hrs.			
Applications					
1.1 Definition, general form, complete se	olution				
1.2 Rules for finding complementary fur	nction				
1.3 Rules for finding particular integral					
1.4 Mass – spring Mechanical system					
1.4.1 Free oscillations					
1.4.2 Damped Oscillations					
1.4.3 Forced oscillations without da	mping.				
Unit 2: Vector Differential Calculus		8 Hrs.			
2.1 Differentiation of vectors					
2.2 Velocity and acceleration					
2.3 Gradient of scalar point function and I	Directional derivative				
2.4 Divergence of vector point function					
2.5 Curl of a vector point function					
2.6 Solenoidal and Irrotational vector field	ls				
Unit 3: Laplace Transform		8 Hrs.			
3.1 Definition, transforms of elementary	functions, properties of Laplace				
transform					
3.2 Transforms of derivative and integra	1				
3.3 Inverse Laplace transform					
3.4 Inverse Laplace transforms by using	partial fractions and convolution				
theorem.					
3.5 Solution of linear differential equation	ons with constant coefficients by				
Laplace transform method.					
Unit 4: Probability Distributions		6 Hrs.			
4.1 Random variable					
4.2 Probability mass function and probab	ility density function				
4.3 Binomial distribution					
4.4 Poisson distribution					
4.5 Normal distribution					
Unit 5: Fourier Series		6 Hrs.			
5.1 Definition, Euler's formulae, Dirichl	et's conditions.				
5.2 Functions having points of discontin	uity				
5.3 Change of interval					
5.4 Expansion of odd and even periodic	functions				
5.5 Half range series		< T			
Unit 6: Application of Partial differential eq	uations	6 Hrs.			
6.1 The method of separation of variables.					
6.2 The Wave Equation.					

- 6.2.1Fourier Series solution of wave equation.
- 6.3 One dimensional heat flow equation
- 6.3.1 Fourier Series solution of wave equation.
- 6.4 The Laplace equation in two dimensional heat flow (Steady State).
- 6.4.1 Numerical solutions of Laplace equation using Gauss Siedel iterative method.

Recommended Books:

- 1. Higher Engineering Mathematics by Dr. B. S. Grewal, Khanna Publishers, Delhi.
- 2. A Text Book of Applied Mathematics, Vol. I and vol. II by P. N. Wartikar & J. N. Wartikar, Pune Vidyarthi Griha Prakashan, Pune.

Reference Books:

- 1. Advanced Engineering Mathematics by Erwin Kreyszig, Wiley India Pvt. Ltd.
- 2. Advanced Engineering Mathematics by H. K. Dass, S. Chand, New Delhi.
- 3. A text book of Engineering Mathematics by N. P. Bali, Iyengar, Laxmi Publications (P) Ltd., New Delhi.

4. Mathematics for Engineers Vol-I & Vol-II by Rakesh Dube, Narosa Publishing House.

Unit wise Measurable Learning Outcomes:

Unit 1: Linear Differential Equations with Constant Coefficients and Its Applications

Students are able to

- a) Solve linear differential equations with constant coefficients.
- b) Solve the problems on free oscillation, damped oscillation and forced vibrations.

Unit 2: Vector Differential Calculus

Students are able to

- a) Differentiate vector quantity.
- b) Find the directional derivative of scalar point function.
- c) Find the divergence and curl of vector point function.
- d) Determine solenoidal and irrotational fields with the help of divergence and curl respectively.

Unit 3: Laplace Transform

Students are able to

- a) Find Laplace transform by using definition
- b) Recall properties of Laplace transform and use to find transforms of given functions.
- c) Use Laplace transform method to solve linear differential equations.

Unit 4: Probability Distributions

Students are able to

- a) Verify the function as probability mass and density function.
- b) Use probability distributions in solving physical and engineering problems.

Unit 5 : Fourier Series

Students are able to

- a) Define Fourier series, Euler's formulae.
- b) Develop Fourier series in an interval.
- c) Expand function as the half range sine or half range cosine series.

Unit 6: Application of Partial differential equations Students are able to

- a) Solve Wave Equation
- b) Solve one dimensional heat equationc) Find numerical solution to two dimensional heat equation.

Title of	f the Course: Engineering Thermodynamics	L	Т	Р	Credit				
Course	e Code: UMCH0302	03	-		3				
Course	Course Pre-Requisite: Basic Physics, Chemistry, Basic Mechanical Engg								
Course substand Second	Course Description: Basic Concepts in Thermodynamics, Forms of energy, Properties of pure substances, Phase diagram and Phase transition; First law of Thermodynamics and applications, Second Law of Thermodynamics and Exergy.								
Course	Objectives:								
1. Unde	erstand various types of energies and its applications in ther	modyı	namic	syste	ms				
2. Appl	ying thermodynamic concepts to thermodynamic systems								
3. Knov	v various laws of thermodynamics and applications to therm	odyna	amic s	ystem	า				
4. Appl	ication of ideal gas processes to thermodynamic systems								
5. Stud	v steam properties. Interpret steam tables and Mollier chart	s with	num	erical					
applica	tions								
6 Unde	erstand and analyze (numerical analysis) various types of air	stand	ard cv	rles					
0. 01100	istand and analyze (namenear analysis) various types of an	Stand	uru cy	cics					
CO	After the completion of the course the student should be	Blo	om's	Cogn	itive				
	able to	leve	el D	escrip	otor				
CO1	Explain fundamental knowledge of Thermodynamics and	II Understanding							
	concept of Entropy Anergy, Exergy								
CO2	Explain principle of operation of Reciprocating Compressor and	II	U	nderst	anding				
	Gas Turbine								
CO3	Solve Numericals by using steam table and Mollier Chart		A	nalyzi	ng				

CO-PO Mapping:

CO4 Classify Steam Boilers and Condensers

CO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3												2		
CO2	3												2		
CO3		3													
CO4				2									2		

IV

Applying

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar/Group Discussions etc. MSE: Assessment is based on 50% of course content (Normally first three modules) ESE: Assessment is based on 100% course content with60-70% weightage for course content (normally last three modules) covered after MSE.

Course Contents:	
Unit 1:	8 Hrs.
Numerical treatment on second law, Clausius theorem, Entropy, Clausius	
inequality, Entropy as a property of system, Entropy of pure substance. T-s and h-	
s planes, Entropy change in a reversible and irreversible processes, Increase of	
entropy principle. Calculation of entropy changes of gases and vapors.(numerical	
treatment should be based on processes) Availability: Available and unavailable	
energy: availability of a closed and open system. Availability of work and heat	
reservoirs Anergy and Evergy	
Unit 2.	6 Urg
Unit 2: Droportion of Duro Substances :	0 H FS.
Properties of Pure Substances :	
Pure substance, Phase change processes, Property diagram for phase change	
process (1-v, p-1, p-v diagram, p-v-1 surface), Triple point of water, Properties of	
steam, Deviation of real gases from Ideal gases, Equations of state: Vander Waal,	
Beattie-Bridgeman, Virial and Diterici's equations. (Descriptive treatment)	
Unit 3:	8 Hrs.
Gas Power Cycles:	
Air Standard cycles: Assumptions, the Carnot Cycle, Otto Cycle, Diesel Cycle and	
Dual Combustion Cycle. Comparison of Otto, Diesel and Dual Combustion	
Cycles. Expression for air standard efficiency and mean effective pressure for	
Otto, Diesel and Dual Combustion cycle.	
Unit 4:	6 Hrs.
Vapour Power Cycles:	
Carnot cycle using steam, Limitations of Carnot cycle Rankine cycle,	
Representation on T-s and h-s planes, Thermal efficiency, Specific steam	
consumption. Work ratio, Effect of steam supply pressure and temperature, Effect	
of condenser pressure on the performance. (Numerical Treatment), Reheat and	
regenerative steam power cycles. Use of steam table and Mollier chart.	
Unit 5:	6 Hrs.
Reciprocating Air Compressors:	
Application of compressed air, classification of compressor, Reciprocating	
compressors, construction, Work input, Necessity of cooling, Isothermal	
efficiency. Heat rejected. Effect of clearance volume. Volumetric efficiency.	
Necessity of multistaging, construction, Optimum intermediate pressure for	
minimum work required After cooler. Free air delivered air flow measurement	
Capacity control	
Unit 6:	6 Hrs
Gas turbines:	U 111 3.
Working principles Applications Cas Turbing Cycle Provider Cycle Ideal Provider	
avela Calculation of gas turbing work ratio. Efficiency at Dressure ratio for	
cycle. Calculation of gas turbine work ratio, Efficiency etc. Pressure ratio for	
maximum work. Open cycle gas turbine-actual Brayton cycle. Methods for	
improvement of thermal efficiency of open cycle gas turbine plant. Effect of	
operating variables on thermal efficiency . Closed cycle gas turbine.	

Textbooks:

1. Thermodynamics: An Engineering Approach, 3rd Edition, Yunus A Çengel and Michael, Boles, Tata McGraw Hill.

2.Basic and Applied Thermodynamics, 2nd Edition, Nag P. K., Tata McGraw-Hill.

References:

1. Sonntag, R. E., Borgnakke, C., & Wylen, G. J. V. Fundamentals of thermodynamics: Wiley.

2. Moran, M. J., Shapiro, H. N., Boettner, D. D., & Bailey, M. Fundamentals of Engineering

3. Jones, J. B., & Dugan, R. E. Engineering thermodynamics: Prentice Hall.

4. Potter, M. C., & Somerton, C. W. Schaum's Outline of Thermodynamics for Engineers, McGraw-Hill.

Unit wise Measurable students Learning Outcomes: After completion of unit , students are able to

- 1. Explain fundamental of Thermodynamics like entropy, anergy, Exergy
- 2. Use Mollier chart and steam table
- 3. Explain fundamental knowledge of Rankine cycle
- 4. Classify steam generators and condensers
- 5. Solve Numericals on Reciprocating Compressor
- 6. Solve Numericals on Gas Turbine

Title of	f the Course: Engineering Thermodynamics	L	Т	P	Credit				
Course	e Code: UMCH0302	03	-		3				
Course	Course Pre-Requisite: Basic Physics, Chemistry, Basic Mechanical Engg								
Course substand Second	Course Description: Basic Concepts in Thermodynamics, Forms of energy, Properties of pure substances, Phase diagram and Phase transition; First law of Thermodynamics and applications, Second Law of Thermodynamics and Exergy.								
Course	Objectives:								
1. Unde	erstand various types of energies and its applications in therr	nodyr	namic	syste	ms				
2. Appl	ying thermodynamic concepts to thermodynamic systems								
3. Knov	v various laws of thermodynamics and applications to therm	odvna	amic s	vsten	า				
4 Annl	ication of ideal gas processes to thermodynamic systems			1					
5 Stud	v stoom proportios. Interpret stoom tobles and Mellier short	c with	num	orical					
5. Stuu	tions	S WILLI	num	encai					
applica									
6. Unde	erstand and analyze (numerical analysis) various types of air	stand	ard cy	cles					
		1							
CO	After the completion of the course the student should be	Blo	om's	Cogn	itive				
	able to	leve	el D	escrip	otor				
CO1	Explain fundamental knowledge of Thermodynamics and	II	U	nderst	anding				
	concept of Entropy Anergy, Exergy								
CO2	Explain principle of operation of Reciprocating Compressor and	II	U	nderst	anding				
	Gas Turbine								
CO3	Solve Numericals by using steam table and Mollier Chart III Analyzing								

CO-PO Mapping:

CO4 Classify Steam Boilers and Condensers

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3												2		
CO2	3												2		
CO3		3													
CO4				2									2		

IV

Applying

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar/Group Discussions etc. MSE: Assessment is based on 50% of course content (Normally first three modules) ESE: Assessment is based on 100% course content with60-70% weightage for course content (normally last three modules) covered after MSE.

Course Contents:	
Unit 1:	8 Hrs.
Numerical treatment on second law, Clausius theorem, Entropy, Clausius	
inequality, Entropy as a property of system, Entropy of pure substance. T-s and h-	
s planes, Entropy change in a reversible and irreversible processes, Increase of	
entropy principle. Calculation of entropy changes of gases and vapors (numerical	
treatment should be based on processes) Availability: Available and unavailable	
energy: availability of a closed and open system. Availability of work and heat	
reservoirs Anergy and Evergy	
Teservoirs, Anergy and Exergy.	6 Una
Unit 2: Droportion of Duro Substances :	0 HIS.
Properties of Pure Substances .	
Pure substance, Phase change processes, Property diagram for phase change	
process (1-v, p-1, p-v diagram, p-v-1 surface), Triple point of water, Properties of	
steam, Deviation of real gases from Ideal gases, Equations of state: Vander Waal,	
Beattie-Bridgeman, Virial and Diterici's equations. (Descriptive treatment)	
Unit 3:	8 Hrs.
Gas Power Cycles:	
Air Standard cycles: Assumptions, the Carnot Cycle, Otto Cycle, Diesel Cycle and	
Dual Combustion Cycle. Comparison of Otto, Diesel and Dual Combustion	
Cycles. Expression for air standard efficiency and mean effective pressure for	
Otto, Diesel and Dual Combustion cycle.	
Unit 4:	6 Hrs.
Vapour Power Cycles:	
Carnot cycle using steam, Limitations of Carnot cycle Rankine cycle,	
Representation on T-s and h-s planes, Thermal efficiency, Specific steam	
consumption. Work ratio, Effect of steam supply pressure and temperature, Effect	
of condenser pressure on the performance. (Numerical Treatment), Reheat and	
regenerative steam power cycles. Use of steam table and Mollier chart.	
Unit 5:	6 Hrs.
Reciprocating Air Compressors:	
Application of compressed air, classification of compressor, Reciprocating	
compressors, construction. Work input. Necessity of cooling. Isothermal	
efficiency Heat rejected Effect of clearance volume Volumetric efficiency	
Necessity of multistaging construction. Ontimum intermediate pressure for	
minimum work required After cooler. Free air delivered air flew measurement	
Conscitu control	
	o Hrs.
Working principles, Applications, Gas Turbine Cycle-Brayton Cycle Ideal Brayton	
cycle. Calculation of gas turbine work ratio, Efficiency etc. Pressure ratio for	
maximum work Open cycle gas turbine-actual Brayton cycle. Methods for	
improvement of thermal efficiency of open cycle gas turbine plant. Effect of	
operating variables on thermal efficiency . Closed cycle gas turbine.	
	L

Textbooks:

1. Thermodynamics: An Engineering Approach, 3rd Edition, Yunus A Çengel and Michael, Boles, Tata McGraw Hill.

2.Basic and Applied Thermodynamics, 2nd Edition, Nag P. K., Tata McGraw-Hill.

References:

1. Sonntag, R. E., Borgnakke, C., & Wylen, G. J. V. Fundamentals of thermodynamics: Wiley.

2. Moran, M. J., Shapiro, H. N., Boettner, D. D., & Bailey, M. Fundamentals of Engineering

3. Jones, J. B., & Dugan, R. E. Engineering thermodynamics: Prentice Hall.

4. Potter, M. C., & Somerton, C. W. Schaum's Outline of Thermodynamics for Engineers, McGraw-Hill.

Unit wise Measurable students Learning Outcomes: After completion of unit , students are able to

- 7. Explain fundamental of Thermodynamics like entropy, anergy, Exergy
- 8. Use Mollier chart and steam table
- 9. Explain fundamental knowledge of Rankine cycle
- 10. Classify steam generators and condensers
- 11. Solve Numericals on Reciprocating Compressor
- **12.** Solve Numericals on Gas Turbine

Title of	f the Course: Fluid Mechanics	L	Т	Р	Credit						
Course	Course Code: UMCH0333 0 2 1										
Course Pre-Requisite: The subject requires that the student should know about the various states of the substance, fundamental dimensions and units, vector calculus, basic fluid properties, the											
application of basic laws of mechanics, thermodynamics and orderly experimentation.											
Course Description: This course aims to impart knowledge different flow patterns, flow and pressure measuring devices.											
Course 1. To in devices 2. To st applica 3. To st 4. To u 5. To end of matheric 6. To d Course	Objectives: Introduce students about basics of fluid properties, pressure material (using fluid). Study basic concepts of fluid statics, buoyancy, floating and suttions. Study physical significance of fluid kinematics, fluid dynamic inderstand the different form of governing equation related to nable the students to analyze and evaluate fluid mechanics systematics, science and engineering. Evelop skills in the analysis of fluid systems for lifelong lear te Outcomes:	easur ubmen s and fluid ystem ning.	emen rged t it's a flow s by a	t technique podies and pplications pplying pr	es/ its 5. inciples						
CO	After the completion of the course the student should be	Bl	oom'	s Cognitiv	e						
	able to	lev	vel 1	Descriptor	,						
CO1	Define fundamental properties of Fluid.	2		Understan ding							
CO2	Explain the fundamental concepts of fluid mechanics	3	4	Applying							
CO3	Solve various fluid flow problems.	3	4	Applying							
CO4	Analyze the energy losses in fluid flow systems.	4		Analyzing							
CO-PO Mapping:											
		DO 10	DCO		00						

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2														
CO2	3													2	
CO3	3														
CO4		2													

Assessments :

Teacher's Assessment based on – Laboratory performance, assignments, Tests, Report containing experiments (50%), Orals (50%) External examination, Performance (50%), Oral (50%).

Assessment	Marks
ISE	50
ESE	50

ISE are based on practical performed/ Quiz/ Mini-Project assigned/ Presentation/ Group Discussion/ Internal oral etc.

ESE: Assessment is based on oral examination

Course Contents:	Duration
Experiment No. 1:	
Flow visualization by plotting of streamlines (Heleshaw's apparatus).	
Aim and Objectives: To visualise flow patterns by plotting streamlines.	
Outcomes: Demonstrate use of Heleshaw's apparatus for flow visualisation	00 11
Theoretical Background: Definition of fluid, properties of fluid, types of flow.	02 Hrs
Experimentation: Demonstration of Heleshaw's apparatus.	
Results and Discussions:	
Conclusion:	
Experiment No. 2:	
Viscosity of oil using Redwood viscometer	
Aim and Objectives: To determine viscosity is of oil a time of flow in second	
through specified hole made in a metallic piece.	
Outcomes: Viscosites for given sample with increase intemprature	II
Theoretical Background: Viscosity is a property of fluid that offers the resistance to	02 Hrs
flow it self-using redwood viscosity apparatus we can measure kinematic of oil	
Experimentation: Calculation of Viscosity using redwood viscometer	
Results and Discussions:	
Conclusion:	
Experiment No. 3: Reynold's Apparatus.	
Aim and Objectives: To perform Revnold's experiment for determination of different	
types of flow.	
Outcomes: Determination of Laminar. Transition & Turbulent flow.	
Theoretical Background: Types of flow.	02 Hrs
Experimentation: Calculation of Reynold's number with Interpretation.	
Results and Discussions:	
Conclusion:	
Experiment No. 4: Verification of Bernoulli's Equation.	
Aim and Objectives: To verify Bernoulli's Equation.	
Outcomes: Practical verification of Bernoulli's Equation.	
Theoretical Background: Euler's Equation, Bernoulli's Equation & Assumptions.	02 Hrs
Experimentation: Calculation & verification of Bernoulli's Equation.	
Results and Discussions:	
Conclusion:	
Experiment No. 5: Calibration of Venturimeter and Orificemeter.	
Aim and Objectives: To calibrate Venturimeter and Orificemeter.	
Outcomes: Calibration of Venturimeter and Orificemeter.	
Theoretical Background: Discharge measurement by Venturimeter and Orificemeter.	00.11
Experimentation: Calculation of coefficient of discharge for Venturimeter and	02 Hrs
Orificemeter.	
Results and Discussions:	
Conclusion:	
Experiment No. 6: Calibration of Rectangular & Triangular notch.	
Aim and Objectives: To calibrate Rectangular & Triangular notch.	
Outcomes: Calibration of Rectangular & Triangular notch.	
Theoretical Background: Discharge measurement by Rectangular & Triangular	02 Hrs
notch.	
Experimentation: Calculation of coefficient of discharge for Rectangular &	
Triangular notch.	

Results and Discussions:				
Conclusion:				
Experiment No. 7: Orifice under steady & unsteady flow condition.				
Aim and Objectives: To calculate hydraulic coefficients.				
Outcomes: Study of steady & unsteady flow condition.				
Theoretical Background: Definition & formula of hydraulic coefficients.	02 Hrs			
Experimentation: Calculation of hydraulic coefficients.				
Results and Discussions:				
Conclusion:				
Experiment No. 8: Determination of coefficient of friction in pipes of different				
materials.				
Aim and Objectives: To determine coefficient of friction in pipes for different materials.				
Outcomes: To calculate friction factor for different pipe material.	02 11-0			
Theoretical Background: Derivation of coefficient of friction in pipes	02 Hrs			
Experimentation: Calculation for friction factor for different pipe material.				
Results and Discussions:				
Conclusion:				
Experiment No. 9: Determination of loss of friction in series pipes.				
Aim and Objectives: To determine loss of friction in series pipes.				
Outcomes: To calculate loss of friction in series pipes.				
Theoretical Background: Derivation of head loss for major and minor losses.	02 Hrs			
Experimentation: Calculation of loss of friction in series pipes.				
Results and Discussions:				
Conclusion:				
Experiment No. 10: Determination of minor losses in pipe-fittings.				
Aim and Objectives: To determine minor losses in pipe-fittings.				
Outcomes: To estimate loss of head in pipe fittings such as sudden expansion, sudden				
contraction, bend & elbow.	0 0 II			
Theoretical Background: Derivation of head loss for major and minor losses.	02 Hrs			
Experimentation: Calculation of loss of head in various pipe fittings.				
Results and Discussions:				
Conclusion:				
Textbooks:				
1. Dr. P.N. Modi and Dr. S.M. Seth, "Hydraulics and Fluid Mechanics including Hydrau	ılic			
Machines", Standard Book House.				
2. R.K.Bansal, "A Text book of Fluid Mechanics and Hydraulic Machines", Laxmi Publ	ications			
Pvt. Ltd.New Delhi.				
3. S. K.Som, Gautam Biswas, Suman Chakraborty, "Introduction to Fluid Mechanics an	d Fluid			
Machines" Tata McGraw – Hill Publication.				
4. Hydraulics Fluid Mechanics and Fluid Machines By S. Ramamrutham.				
Reference Books:				
1. White, "Fluid Mechanics", McGraw Hill Publication.				
2. Cengel Yunus A. And Cimbala John M. "Fluid Mechanics and Fundamental and appl	ications",			
Tata Mcgraw-Hill New Delhi.				
3. Streeter, Wylie and Bedford, "Fluid Mechanics", Tata McGraw – Hill Publication.				
Experiment wise Measurable students Learning Outcomes:				
1. Able to calibrate instrument.				
2. To estimate the discharge through a pipe or open channels.				

Title of the Course: Manufacturing Processe	L	Т	Р	Credit				
Course Code: UMCH0304	5	3			3			
Course Pre-Requisite: Basic Mechanical engineeri	ng, workshop	practice-	I, Engin	eering cl	nemistry.			
	<i>U</i> , 1	1	, U	e	5			
Course Description:								
Course Objectives:								
1. Acquire basic knowledge of manufacturing proce	sses.							
2. Understand principles of metal casting, metal join	ning and powe	ler metall	urgy.					
3. Understand principle of metal and plastic forming	5.							
Course Outcomes:								
Students should be able to								
1								
Assessments.								
Two components of In Semester Evaluation (IS	E) One Mid	Samasta	r Evor	ination	(MSE)			
and one End Semester Examination (ESE) havi	12, One Mid	and 50	% weig	hts resp	(NISE) ectively			
Assessment	Marks		/o weig	nts iesp	cuvery.			
Assessment	10							
ISE I MSE	30							
	10							
	50							
ESE ISE 1 and ISE 2 are based on assignment/dealer								
MSE: Assessment is based on 50% of course of	ed lest/quiz/	semmar/	throa r	Discussi	ons etc.			
ESE: Assessment is based on 100% course con	ont with 60.7	any mst 100	the shear of		a contont			
LSE. Assessment is based on 100% course com	EIII WIIII00-7	0% weig	ginage	or cours	se coment			
(normally last tillee modules) covered after MS	L							
Unit 1: Fundamentals of Metal Casting					00 Un g			
Metal casting: Importance of casting advantage	a diadvant	agos and	limitat	ions of	09 mrs.			
initial casting. Importance of casting, advantage	es, uisauvailla	boyos N	Antoriol	s used				
and selection criteria for pattern pattern all		d colour		s used				
Moulding and core processes: Types of sands i	used in moul	ding and	core m	useu,				
their properties Sand moulding types such	as Green	and Mo	ulding	shell				
Moulding CO ₂ Moulding Investment casting	Fauinmen	ts and t	ools us	ed for				
moulding and core making Components of	of gating sy	ustem f	unction	is and				
importance of runners and risers solidification	n control dev	vices: ch	ills cer	amics				
Introduction to permanent mould casting proc	esses such a	s Contir		asting				
Gravity die casting pressure die-casting Centr	ifugal casting	z. Vacuu	m die c	asting.				
Squeeze casting	irugur ousting	, <i>•</i> ucuu		usting,				
~ 1								
Unit 2: Melting, Pouring and Modernization	on, Mechani	zation i	n Meta	l	06 Hrs.			
Casting	•••	1 0						
Types of melting furnaces-Cupola furnace,	, oil/gas fir	ed furna	aces, c	rucible				
furnaces, Electrical furnaces, Rotary furnaces,	etc. Furnace	selection	n criter	a their				
applications and melting practice on different	ferent furn	aces. N	letal p	ouring				
equipments, Cleaning-fettling of castings.	Casting defe	cts, the	r cause	es and				
remedies. Modernization, mechanization, us	e of compu	ters in t	oundri	es and				
layout of foundry								

Unit 3:Metal Joining	06 Hrs.					
Welding Processes: Overview and classification of welding processes: Fusio welding, gas and arc welding, submerged arc welding, inert gas welding, Electric sla welding, Carbon-dioxide shielded welding, thermit welding, Pressure welding, soli phase welding and friction welding.						
Unit AMotal forming	00 H rs					
Metal Forming Processes: Nature of plastic deformation, hot working and cold working. Principles of rolling roll passes, roll pass sequences. Forging: Forging operations, smith forging, drop forging, press forging, forging defects. Extrusion and Sheet metal operations: Extrusion principle, hot extrusion, cold extrusion, wire drawing, swaging, tube making, rod making. Sheet metal operations: Press tools operations, shearing action, spinning, bending, stretch forming, embossing and coining.	09 1113.					
Unit 5:Plastic forming	05 Hrs.					
Fabrication of plastics: Thermosetting and thermoplastic materials, comparison with other materials, their properties and applications. Shaping of plastics: casting, blow moulding, compression moulding, transfer moulding, injection moulding, extrusion, thermoforming, rotational moulding, foam moulding and calendaring etc. Welding of plastics.						
Unit 6: Powder metallurgy	05 Hrs.					
Principle, process, applications, advantages and disadvantages of powder metallurgy, Blending, compaction, sintering and metal injection molding:, Processes of powder making and mechanisms of sintering, process sheet for typical component.						
Taythooka						
 P. N. Rao, "Manufacturing Technology- Foundry, Forming and Welding", Vol. McGraw-Hill, N 3rd edition, 2009. 	. I, Tata					
2 P. L. Jain "Principles of Foundry Technology" Tata McGrayy Hill New Delhi 2	nd					
Edition 2006						
3. P. C. Sharma, "A Textbook of Production Technology (Manufacturing Process) Chand & Company, 2006.	es)", S.					
References:						
 Machine Tools and Mfg. Technology, Steve F. Krar, Mario Rapisarda, Albe Check 	rt F.					
2. O. P. Khanna, Foundry technology, Khanna Publishers, New Delhi.						
 P L Jain, Principles of foundry technology, Tata McGraw-Hill, New Delhi. O. P. Khanna. Welding technology, Khanna Publishers, New Delhi. 						
5. Hajra Chowdhary, Elements of Workshop Technology, Vol.I, Media Promoters & Publications, Bombay						

- 6. B.S. Raghuvanshi, W/S Technology, Vol. II, Dhanapat Rai Publi. Delhi, 10th Ed, 2000
- 7. W.A.J. Chapman, Workshop Technology, Vol. II, Viva Books, New Delhi,
- 8. Hajra Choudhury and A.K. Hajra Choudhury, Elements of Workshop Technology, Vol. II, S.K. Media Promoters and Publishers, New Delhi, 13th Edition, 2012.
- 9. Production Technology, R. K. Jain, Khanna Publishers, Delhi, 15th Edition, 2000.
- 10. Workshop Technology, W.A.J. Chapman, CBS Publishing and Distributors, N. Delhi Vol. I, 2001, Vol. I 2007 and Vol.III, 1995

Unit wise Measurable students Learning Outcomes:

1. Student will able to understand fundamentals of casting processes.

- 2.Student will able to understand metal pouring and modernization in metal casting process
- 3. Student will able to understand metal joining processes.
- 4. Student will able to understand different metal forming processes.
- 5. Students will be able understand plastic forming processes.
- 6. Student will able to understand powder metallurgy process.

PROJECT BASED LEARNING (S.Y B.TECH)

COURSE NAME: <u>MANUFACTURING PROCESS</u> COURSE CODE:

MPPBL 01: Casting

Case study of any one component inclusive of drawing, pattern layout, pattern and core making/ die making, sand system used/ die material, moulding process, mould assembly, melting process, metal treatments, material cast specifications, pouring / casting, fettling and cleaning operations, coating given on casting/ any other surface treatment, heat treatment if any, types of equipments/ machines used, defects and defect analysis, testing.

(Green sand process, Co₂ process, investment casting, die casting (Pressure / die casting) centrifugal casting)

MP PBL 02: Welding

Case study of any one component inclusive of drawing, types of joint, process used, process parameters, heat treatment if any, material welded specifications, defects and defect analysis, testing.

(Gas welding, arc welding, MIG welding, Resistance welding)

MPPBL03: Metal forming.

Case study of any one component inclusive of drawing, types of forming process, die/ tool design, die/ tool material, process parameters, heat treatment if any, material formed specifications, defects and defect analysis.

(Cold forming, hot forming, forging, extrusion, wire drawing, sheet metal operations)

MPBL04: Plastic forming/ Powder metallurgy.

Plastic forming

Case study of any one component inclusive of drawing(if any), die/ tool design, die/ tool material, specifications of machine used, plastic material used, type of moulding, defects and defect analysis.

Or

Powder metallurgy

Case study of any one component inclusive of drawing (if any), powder material/ materials, process of powder manufacturing, die design, die material, process parameters for mixing, compacting, sintering and post processes.

2. Activities with timeline:

Sr. No.	Activity	Timeline
1	PBL awareness in the class	1 st week (17-21 July 2018)
2	Announcement of problem after PBL and	2 nd week (24-28 July 2018)
	Team formation	
3	Visits to Industries.	29 th July and 5 th August 2018
4	Project ISEI: Synopsis presentation	4 th week (7-11 August 2018)
5	Completion of corrections/ Improvement in synopsis	5 th week (14-18 August 2018)
	synopois	
6	Project ISE II: Project progress presentation with model or case study	10 th week (11-15 September 18)
7	Completion of correction/ Improvement II	11 th week (18- 22 September 18)
	(Evaluation II)	
8	End semester evaluation of project	13 th week (02-06 October 18)
9	Determining future scope for project	14 th week (09-13 October 18)

3. Assessment Scheme:

ISE I: 10 marks

ISE 2: 10 marks

ISE workshop II : 15 marks

4. Evaluation Scheme:

Project ISEI: Synopsis presentation with 10 marks

Project ISE II: Project progress presentation with model/case study for 15 marks

End semester Evaluation of project : Multmedia presentation and demonstration of working models for 15 marks out of 25 of workshop II ISE.

Title of the Course: Machine Drawing and Computer Aided	L	Т	Р	Credit
Drafting				
	3	1		4
Course Code: UMCH0305				
Course Pre-Requisite: - 1. Fundamentals of Engineering Drawing				

2. Basic knowledge of 2-D drafting using software

Course Description: Machine Drawing and Computer Aided Drafting is offered as credit course at the third semester of Mechanical Engineering under Graduate programme. It is used to communicate the necessary technical information required for manufacture and assembly of machine components. These drawings follow rules laid down in national and International Organizations for Standards (ISO). Hence the students will be aware of the different standards. Students will to be familiar with industrial drafting practices and thorough understanding of production drawings to make themselves fit in industries .This course enables students to create 2D model, Assembly, Bill of material and drafting of any mechanical components. Students will construct 3 models. Topics will include sketching, constraining, solid modeling, Drafting and Assembly modeling

Course Objectives:

1. To make the student familiar with Indian Standards for drawing.

2. To use different limits, fits and tolerances on assembly drawings.

3. To provide sound knowledge of detail and assembly procedure.

4.To build/Construct Build 2D sketches fulfilling appropriate dimensional and geometrical constraints using CAD software

5. To design 3D solid Models of parts using CAD software.

6. To Construct 2D projections from 3D models and assemblies.

7. To Develop 3D assemblies using CAD software taking into consideration appropriate assembly approach

Course Learning Outcomes:

CO	After the completion of the course the student should be	Bloom's Cognitive			
	able to	level	Descriptor		
CO1	Demonstrate the various BIS conventions in machine drawing	II	Understanding		
CO2	Interpret the geometrical dimensioning and tolerance used in industrial drawing	II	Understanding		
CO3	Make use of free hand sketches for drawing simple machine components	III	Applying		
CO4	Construct the detail part and assembly drawing	III	Applying		
CO5	Develop the Interpretation curves for two mating parts	III	Applying		
CO6	Design and develop 3D solid Models and 3D assemblies using CAD software.	VI	Develop		

							CO-P	O Mapp	oing:						
со	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	-	-	-	-	-	-	-	-	-	-	2	2	-	-
CO2	2	-	2	-	-	-	-	-	-	-	-	2	2	-	-
CO3	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO4	2	-	2	-	-	-	-	-	-	-	-	-	-	-	-
CO5	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO6	-	-	-	-	3	-	-	-	-	-	-	1	-	-	-

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

and one End Semester Examination (ESE) hav	ing 2070, 3070 and 3070 weights respe	cuvely.
Assessment	Marks	
ISE 1	10	
MSE	30	
ISE 2	10	
ESE	50	
ISE 1 and ISE 2 are based on assignment/decla	red test/quiz/seminar/Group Discussion	ons etc.
MSE: Assessment is based on 50% of course c	ontent (Normally first three modules)	
ESE: Assessment is based on 100% course con	tent with60-70% weightage for cours	e content
(normally last three modules) covered after MS	SE.	
Course Contents:		
Unit No. 1:		2Hrs.
Study of B.I.S.(Bureau of Indian Standards)	Conventions	
Significance and importance of various BIS Co sheet sizes and layout, Dimensioning Technic engineering materials, BIS conventions for se of screw threads and threaded parts, Internal an gearings, conventional representation of comm serrated shaft, Knurling, bearings <i>etc.</i>). Symbol riveted joints as per BIS conventions.	nventions as per standards, Drawings ques, Conventional representation of ctioning, conventional representation d external threads, springs, gears and non machine elements (splined shaft, ic representation of Welds, Rivets and	
Unit No. 2:		8 Hrs.
A)Sketching of machine components		
Free Hand drawing on Nuts, bolts, studs, was	hers with different types of locking	
arrangements of nuts, Conventional representat	ion of threaded parts in external and	
internal views with sections and assembly. Typ	es of keys: Parallel, sunk, woodruff,	
saddle, feather etc. Types of keys couplings: fle	exible and Rigid couplings, Types of	
bearings: Simple, Solid, bushed, I. S. convention	onal representation of ball and roller	
bearings, Pipe Joints and fittings: Different types	s of pipe Joints like Expansion joints,	

piping layouts, valves, pipe fittings like sockets, nipples, plugs, bends, Tees, elbows, crosses, etc. Power transmission elements: Flat belt, V belt, gears, chains, ropes, sprockets

B) Interpenetration of Solids:	
Intersection of surfaces and solids: - Intersection of prisms, cylinders, cone with prism	
& cylinder, pyramid with prism, and vice versa both solids in simple position. (Prisms	
Unit No. 3: Coometrical Dimensioning and Tolerances	1 Hrs
Significance of limit systems, terminology, Dimensional Tolerances, types of fits	4 111 5.
Recommendations and selections. Geometric Tolerances, Nomenclature, Rules.	
Symbols, form and position, Representation of geometric tolerances on drawing.	
giving Tolerances for individual dimensions on a detail drawing. Roughness	
Grades, Representation of surface roughness on drawing (Machining symbol),	
Relation between surface finish & Manufacturing processes.	
Unit No. 4: Production Drawing	8 Hrs.
Assembly and part drawings (Machine tool parts, Engine parts, Valves, Jigs and	
Fixtures, Fabricated assembly) study and preparation of bill of materials. Entering	
limits, fits, tolerances and surface finish symbols on detail and assembly drawing	
	10 II
Unit No. 5:A) Introduction to Computer Aided Design: Concept of $CAD/CAM/CAE$ Need for implementing CAD. Application and herefits of CAD	10 Hrs.
Hardware Requirements Various Software packages used for 3D Modeling	
B) Sketching :	
2D sketching of elements like line, circle, arc, spline etc. Dimensioning these	
elements, Geometrical constraints like parallel, perpendicular, co-incident,	
vertical, horizontal, tangent, symmetric etc.	
Generation of Solid models Import and export of 3D solid models between two	
different software packages. Physical properties like volume, surface area, center	
of gravity etc of solid model.	
Unit No. 6:	8 Hrs.
A)Assembly Modeling: Concept of Bottom up and top down approach, Building	
two composite assemblies of components (consisting at least five components)	
along with all relevant details, Exploded views using assembly leatures in any suitable 3D modeling software. Introduction to Kinemetic Simulation of assembly	
using appropriate tool in the high end CAD software	
using appropriate toor in the high end CAD software.	
B)Generation of 2D Drawings:	
Generation of Orthographic views of individual components required for shop	
floor [working drawings] from 3D model which will include all relevant views like	
front, side, top, bottom views, sectional views, dimensioning, dimensional and	
geometrical tolerances etc. Generation of title block in sheet. Orthographic views	
of assembly drawings, generation of Bill of Materials (BOM). Plotting of	
drawings.	
Textbooks: 1 K I Narayona Dr. D. Kannaich and K. Vankata Daddy, "Machine Dressing	"Norr
1. K. L. INdrayana, Dr. F. Kannalan, and K. Venkata Keddy, Machine Drawing	, inew
2 N D Rhatt & V M Panchal "Machine Drawingby" Charotar Pub Anand G	uarat
3 P S Gill "A Textbook of Machine Drawing" S K Kataria& sons New Delhi	ijurai
A N.D. Lynnerlyn "Machine Drawing" Deerson Education	
4. N. D. Junnarkar, Machine Drawing Pearson Education	
5. R.K. Dhavan, "Machine Drawing", S. Chand and Company. New Delhi	

- 6. N.Sidheshwar, P.Kannaiah and V.V. Shastry, "Machine Drawing"McGraw Hill,2001
- 7. CATIA V5 R20 for Engineers by SHAM TICKOO

References:

- 1. IS Code: SP 46 1988, Standard Drawing Practices for Engineering Institutes
- 2. "Design Data", Faculty of Mechanical Engineering, PSG College of Tech, Coimbatore
- 3. IS: 2709-Guide for Selection of Fits, B.I.S. Publications
- 4. IS:919-Recommendation for Limits and Fits for Engineering, B.I.S. Publications
- 5. IS: 8000-Part I, II. III. TV, Geometrical Tolerencing of Technical Drawings –B.I.S. Publications
- 6. I.S.:696 Code of practice for general engineering drawings. BIS Publication.
- 7. I.S.:2709 Guide for selection of fits. BIS Publication.

Unit wise Measurable students Learning Outcomes:

1. To get familiar with Bureau of Indian Standards drawing conventions.

2. To be able to draw proportionate free hand sketches of standards machine components and understanding penetration curves of solids.

3. To understand the use of limits, fits and tolerances with respect to assembly drawings

- 4 To be able to prepare detail drawings from given assembly drawings and vice a versa.
- 5. Students shall be able to Construct 2D projections from 3D models using CAD software

6. To Develop 3D assemblies using CAD software taking into consideration appropriate assembly approach

Title of the Course :ELECTRICAL TECHNOLOGY Course Code: UMCH361		Т	Р	Credit
		-	-	-
Course Pre-Requisite: Applied physics				

Course Objective:

CO		Blooms	Descriptor
		level	
CO1	Recall the principles of electrical engineering	1	Remembering
CO2	Explain the construction and operating principles of motors	2	Understanding
CO3	Explain the construction and working of Electric heating devices.	2	Understanding
CO4	Select suitable electrical drives for mechanical systems	3	Applying

PO MAPPING

PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
2	-	-	-	-	-	-	-	-	-	-				
2	-	-	-	-	-	-	-	-	-	-				
2	-	-	-	-	-	-	-	-	-	-				
2	2	-	-	-	-	-	-	-	-	-		2		

Teachers assessment

End Semester Examination (ESE) for 100 marks

	Assessment	Marks	
	ESE	100	
	7 Hrs		
	Unit 2: 3 phase AC motor: 3 phase induction motor- Construction, equation, speed torque characteristics, powe delta starter, DOL starter, autotransformer rotation, Electric braking	working, types, speed equation, torque er losses, applications, Need of starter, star starter, rotor resistance starter, reversal of	7 Hrs.
	Unit 3:Mechanical Testing Benefits of electric drive, individual drive, mul (Based on speed-torque variation, active/passiv characteristics of electric motor under load varia	timotor drive. Types of mechanical load e load.) Concept of stable operating tions.	7 Hrs.

DC motor Speed control – armature control, field control(Numerical treatment), 3 phase	
induction motor Speed control - voltage control, V/f control, rotor resistance speed control	
(Numerical treatment)	
Electrical to mechanical Energy conversion (Numerical Treatment).	
Textbooks:	
Text Books:	
1. Electrical Technology (Vol. II)- B. L. Theraja ,S. Chand Publ.	
2. Utillization of Electric power- R.K.Rajput, Laxmi Publ.	
References:	
1. Electrical power – S. L. Uppal, DBS Publ	
2. First course in Electrical Drives- Pillai S.K – Willey Eastern	

Title of the Course: Object Oriented Programming Lab	L	Т	Р	Credit
Course Code: UMCH0330	0	0	2	1
Course Pre-Requisite: Basic Electronics and Computer Programming in	'C'			

Course Description:

This subject exposes the learner to the various typical object oriented concepts like, classes, objects, inheritance, Operator Overloading etc. It also makes the reader realize the advantages of object oriented Programming Methodology over the conventional procedural programming methodology. This course encourages students to solve real life problems by designing and developing real time application using object oriented programming language.

Course Objectives:

1. To develop and enhance the programming skills amongst the students in general as well as application of it in the field of Mechanical Engineering.

2. To introduce an object oriented programming language.

Course Learning Outcomes:

Ability to distinguish C and C++, learn basic programming using C++

CO	After the completion of the course the student should be	Bloom's Cognitive			
	able to	level	Descriptor		
CO1	Distinguish between object oriented programming and	1	Knowledge		
	procedural programming.				
CO2	Apply their knowledge and programming skills to solve	3	Application		
	various computing problems in the field of Mechanical				
	Engineering.				
CO3	Design and Develop small C++ application to solve real time	3,	Application,		
	problems.	6	Create		

CO-PO Mapping:

СО	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2											2	2		
CO2	3	2										2	3	2	
CO3		2	2						2			2	3	2	2

Assessments:

Teacher Assessment:

One component of in Semester Evaluation (ISE) and one End Semester Examination (ESE) having 50%, and 50% weights respectively.

Assessment	Marks
ISE	50
ESE	50

ISE are based on practical performed/ Quiz/ Mini-Project assigned/ Presentation/ Group Discussion/ Internal oral etc.

ESE: Assessment is based on oral examination

Course Contents:	
Experiment No. 1: Assignment on concepts of object oriented programming.	4 Hrs.
Theoretical Background: Importance of OOP, Introduction to object oriented	
programming, programming paradigms, Difference between C and C++.	
Experiment No. 2: Programs on control structures and functions	4 Hrs.
Theoretical Background: C++ Declaration & Control structure (Moving from C to C++)	

Data-type, variables, Reference variable (Definition and sample program), constants,					
operators in C & C++ (With simple programs as examples), Control Flow Structure (If, If-					
else, Loops- Illustration with simple programs), Arrays, Strings and pointers (Concept					
only), Functions, Types of functions.					
Experiment No. 3: Programs on concept of classes and objects					
Theoretical Background: Classes and Objects					
Abstraction mechanisms: Classes, Objects, private, public & Protected (Simple programs)					
Constructor, types of constructors, destructor (With examples)					
Experiment No. 4: Programs using inheritance and polymorphism.	4 Hrs.				
Theoretical Background: Extending Classes					
Inheritance: Types of Inheritance (With examples), Polymorphism, Types of					
Polymorphism (with Examples).					
Experiment No. 5:	8 Hrs.				
Design problem on stock and accounting of a small organization, payroll preparation,					
costing and invoice preparation, sample artificial intelligence examples, solution to					
sample mechanical engineering design and analysis problems, optimization problem.					
Theoretical Background: A C++ practical application development using knowledge					
gained in above experiments.					
Textbooks:					
 Object oriented programming with C++, E. Balagurusamy, Tata McGraw Hill Educ Edition 	ation ,3rd				
2. Let us C++" .Yashwant Kanitkar .BPB Publication					
3. "Object-Oriented Programming in C++". Raiesh K Shukla, Wiley India					
4. Classic Data structures by Samantha, PHI Learning Pvt.Ltd, 2nd Edition.					
References:					
1. "Professional C++", Solterwiely India.					
2. Problem solving with C++, The OOP, Fourth edition, W.Savitch, Pearson education.					
3. Data structures and Algorithm Analysis in C++, Mark Allen Weiss, Pearson Education	on.PvtLtd.,				
Second Edition					
4. An introduction to Data structures and algorithms, J.A.Storer, Springer.					

Curriculum is framed by considering syllabus and inputs from following sources:

- 1. F.Y.B.Tech. Curriculum for Computer programming using 'C' of KIT's COEK.
- 2. VIT Vellore syllabus for the subject problem solving using 'C'. (2 Hours Lecture and 2 Hours Practical Per week)
- 3. Rajarambapu Institute of Technology Curriculum for the subject computer programming. (3 Hours lectures and 2 hours practical per week)
- 4. Interaction with Director, Bentley Systems Ltd., Pune.
- 5. Pre-DAC syllabus (Entrance Exam for CDAC courses).

Title of the Course: Machine Drawing and CAD Lab	L	Т	Р	Credit				
Course Code: UMCH0331			2	1				
Course Pre-Requisite: 1. Fundamentals Engineering Drawing								
2. Basic knowledge of 2-D drafting using software								
Course Description: Students will to be familiar with industrial drafting practices and thorough understanding of production drawings to make themselves fit in industries. This course enables students to create 2D, Assembly, Bill of material and drafting of any mechanical components. Students will learn to apply principles of technical drawing and acquire skills in the use of appropriate computer aids								
Course Objectives:								
1. To make the student familiar with Indian Standards for d	lrawing							
2. To build/Construct Build 2D sketches fulfilling appropriate di	2. To build/Construct Build 2D sketches fulfilling appropriate dimensional and geometrical constraints							
using CAD software								
3. To Construct 2D projections from 3D models and assemblies								
4. To Develop 3D assemblies using CAD software taking into c	onsidera	tion app	propriate	assembly				

Course Learning Outcomes:

CO	After the completion of the course the student should be	Bloom's Cognitive			
	able to	level	Descriptor		
1	Demonstrate the various BIS conventions in machine drawing	Π	Understanding		
2	Make use of free hand sketches for drawing simple machine components	III	Applying		
3	Build 2D sketches fulfilling appropriate dimensional and geometrical constraints using CAD software.	III	Applying		
4	Design basic and advanced 3D solid Models of parts using CAD software.	IV	Analyzing		
5	Construct 2D projections from 3D models and assemblies	IV	Analyzing		
6	Develop 3D assemblies using CAD software taking into consideration appropriate assembly approach	VI	Creating		

CO-PO Mapping:

со	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	-	-	-	-	-	-	-	-	-	-	2	2	-	-
CO2	2	-	2	-	-	-	-	-	-	-	-	2	2	-	-
CO3	1	-	-	-	3	-	-	-	-	-	-	1	-	-	-
CO4	1	-	-	-	3	-	-	-	-	-	-	1	-	-	-
CO5	1	-	-	-	3	-	-	-	-	-	-	1	-	-	-
CO6	1	-	-	-	3	-	-	-	-	-	-	1	-	-	

Assessments :

Teacher Assessment:

One component of In Semester Evaluation (ISE) and one End Semester Examination (ESE)

having 50%, and 50% weights respectively.							
Assessment							
ISE							
ESE(POE)							
ISE are based on practical performed/ Quiz/ Mini-Project assigned/ Presentation/ Group							
Discussion/ Internal oral etc.							
ESE: Assessment is based on oral examination	1						
Course Contents:							
Sheet No. 1: Based on BIS conventions		2Hrs.					
Aim and Objectives: To draw BIS conventions	on A2 Sized Sheet						
Outcomes: Student will be familiar with India	an Standards for drawing						
Theoretical Background: Study of various B	IS conventions						
Sheet No. 2: Based on free hand sketching		2Hrs.					
Aim and Objectives: To draw free hand sketch	ing on A3 Sized Sheet						
Outcomes: Free hand sketching is used so as to e	enable the students to quickly						
present, in graphical form, an idea which is related	d to particular problem.						
Theoretical Background: Study of machine of	components.	A 11					
Sheet No. 3: Based on free hand sketching		2 Hrs.					
Aim and Objectives: To draw free hand sketch	ing on A2 Sized Sheet						
Outcomes: Free hand sketching is used so as to e	to portionly problem						
Theoretical Background: Study of machine	a to particular problem.						
Theoretical background: Study of machine of	components.						
Sheet No. 4: Based on Interpenetration of S	olids	2 Hrs.					
Aim and Objectives: To draw Interpenetration	of solids A3 Sized Sheet						
Outcomes: Students will be able to develop the I	nterpretation curves for two mating						
parts							
Theoretical Background: Study of section of	solids.						
Sheet No. 5:Based on preparing Assembly	and Details and showing	3 Hrs.					
GD&T and surface roughness symbols on drav	wing using drafting software on						
A3 Sized Sheet.							
Aim and Objectives: To draw Assembly and	Details of machine component						
using drafting software on A3 Sized Sheet.							
Outcomes: Students will be able to understand an	nd draw the assembly of machine						
components.							
Check No. (
Sheet No. o: Based on preparing Assembly	and Details and snowing	3Hrs.					
GD& I and surface roughness symbols on drav	wing using drafting software on						
As sized Sheet.	Datails of ligs and Eisturgs						
using drafting software on A2 Sized Sheet	Details of Jigs and Fixtures						
using utating software on AS Sizeu Sheet.	nd draw the assembly of ligs and						
Fixtures	ing maw the assentiony of Jigs and						
Sheet No. 7 Rased on preparing Assembly	and Details and showing	3Hrs					
GD&T and surface roughness symbols on dray	wing using drafting software on	51115					
A3 Sized Sheet.	and asing arating software of						

Aim and Objectives: To draw Assembly and Details of Fabricated parts	
using drafting software on A3 Sized Sheet.	
Outcomes: Students will be able to understand and draw the assembly of	
Fabricated parts	
Sheet No. 8 Based on generation of Solid models of at least 6 simple	3Hrs
industrial components and converting it into orthographic views using High	
End CAD sotware and printing it on A4 size sheet.	
Aim and Objectives: To draw Solid models of a simple industrial components	
Outcomes: Students will be able to generate solid model and convert into	
orthographic views	
Sheet No. 9 Based on generation of Assembly models of at least 2 assemblies	3Hrs
and converting it into orthographic views using High End CAD software and	
printing it on A3 size sheet.	
Aim and Objectives: To generate Assembly models.	
Outcomes: Students will be able to generate assembly and convert it into	
orthographic views.	

Textbooks:

1. K. L. Narayana, Dr. P. Kannaiah, and K. Venkata Reddy, "Machine Drawing", New Age International Publishers, New Delhi

2. N. D. Bhatt & V. M. Panchal, "Machine Drawingby", Charotar Pub, Anand, Gujarat

3. P. S. Gill, "A Textbook of Machine Drawing", S. K. Kataria& sons, New Delhi

4. N. D. Junnarkar, "Machine Drawing", Pearson Education

5. R.K. Dhavan, "Machine Drawing", S. Chand and Company, New Delhi

6. N.Sidheshwar, P.Kannaiah and V.V.S.Sastry, "Machine Drawing"McGraw Hill,2001.

7. CATIA V5 R20 for Engineers by SHAM TICKOO

References:

- 1. IS Code: SP 46 1988, Standard Drawing Practices for Engineering Institutes
- 2. "Design Data", Faculty of Mechanical Engineering, PSG College of Tech, Coimbatore
- 3. IS: 2709-Guide for Selection of Fits, B.I.S. Publications
- 4. IS:919-Recommendation for Limits and Fits for Engineering, B.I.S. Publications
- 5. IS: 8000-Part I, II. III. TV, Geometrical Tolerencing of Technical Drawings –B.I.S. Publications
- 6. I.S.:696 Code of practice for general engineering drawings. BIS Publication.
- 7. I.S.:2709 Guide for selection of fits. BIS Publication.

Measurable students Learning Outcomes:

1. To get familiar with Bureau of Indian Standards drawing conventions.

- 2. To be able to draw proportionate free hand sketches of standards machine components.
- 3. Understanding penetration curves of solids.
- 4. Ability to use standard drafting software for showing limits, fits and tolerances and surface roughness symbols with respect to assembly drawings and detail drawings.
- 5. To be able to prepare detail drawings from given assembly drawings and vice a versa.

6. Students shall be able to Construct 2D projections from 3D models using CAD software

7.To Develop 3D assemblies using CAD software taking into consideration appropriate assembly approach

Title o	Title of the Course: Thermal Engineering Lab L T P Credit										Credit					
Course Code: UMCH0332												0	0	2	1	
Course Pre-Requisite: Basic Mechanical Engineering, Physics																
Course Description: Basic Concepts in Thermodynamics, Working of Steam generator and Condenser, Working Principle of Reciprocating compressor, Working Principle of Gas Turbine																
Course	Course Objectives:															
1. To U	1. To Understand types and working of Steam Boilers and steam condensers.															
2. To D	emoi	nstrat	e wo	rking	of St	eam	calori	imete	ers.							
3. To D	eterr	nine	Ther	mo pl	nysica	al pro	perti	es of	Lubri	catin	g oil a	nd Gr	ease			
4. To e	stima	ite ef	ficier	ncy of	Reci	proca	ting	Comp	oresso	or	-					
Course	e Lea	rning	g Out	tcom	es:											
СО	Aft	er the	e com	pleti	on of	f the o	cours	se the	e stud	ent s	hould	be	Bloo	om's	Cogn	itive
	able	e to		1 2 3 2									leve	1 D	Descrip	otor
CO1	Clas	ssify S	team	Boile	rs and	l stear	n con	dense	rs				II	Ţ	Unders	tanding
CO2	Exp	lain w	orkin	g prin	ciple	of Ste	eam C	alorir	neter				II	U	Inderst	anding
CO3	Det	ermir	ne Th	ermo	phys	ical p	rope	rties	of Lul	bricat	ting oi		V	E	valuat	ing
	and	Grea	se													
CO4	Esti	mate e	efficie	ency o	f Rec	iproca	ting c	compr	essor				V		Eval	uating
												•		•		
) Ma	nnin	~•													
	P01	PO2	g• PO3	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO	1 PS	O2 PS	O3 PSO4
C01	3												2			
CO2	3												2			
CO2	3		2										2			
CO4	-	2	3										2			
001			0													
Assessments : Teacher Assessment: One component of In Semester Evaluation (ISE) and one End Semester Examination (ESE) having 50%, and 50% weights respectively.																
Asses	smen	t							Mark	S						
ISE									50							
ESE									50							
ISE are	e base	ed on	pract	ical p	erfor	med/	Quiz	/ Mir	ni-Pro	ject a	assigne	ed/Pr	esen	tatio	n/ Gro	oup
Discus	sion/	Intern	nal or	al etc		_										
ESE: A	ssess	sment	is ba	ised o	n ora	l exa	minat	tion								

Course Contents:	
Experiment No. 1: Test On Carbon Desidue Appendix	2 Hrs
L'Appendication Test on Carbon Residue Apparatus	21115
Aim and Objectives: To determine the percentages of carbon residue after evaporation	
01 011.	
Experiment No. 2: Determination of Flash and Fire Point of Lubricating Oil	2 11
Aim and Objectives: Determination of flash and fire point of given lubricating oil.	2 Hrs
Experiment No. 3: Test on Dropping point apparatus	
Aim and Objectives: To determine the dropping point of lubricating grease	
Experiment No. 4: Test on Aniline Point apparatus	2 Hrs.
Aim and Objectives: To determine the aniline point of given lubricating oil.	
Experiment No. 5: Study and demonstration of Steam condensers	2 Hrs.
Aim and Objectives: To Classify and explain working of Steam Condenser and	2 1115.
calculation of performance parameters of condenser	
Outcomes: Students are able to Classify and explain working of various steem	
Condenser and determine performance personators	
Condensel and determine performance parameters.	
Experiment No. 6: Study and Demonstration of Steam Boilers	2 Hrs.
Aim and Objectives: To Classify and explain working of Steam Boilers	
Outcomes: Students are able to Classify and explain working of various Steam	
Boilers	
Experiment No. 7: Study and demonstration of Boiler mounting and Accessories	2 Hrs
Aim and Objectives: To Classify and explain working of Boilers Mounting and	
accessories	
Outcomes: Students are able to Classify and explain working of various Boilers	
mountings and accessories	
Experiment No. 8: Study and demonstration of calorimeters	2 Hrs
Aim and Objectives: To Classify and explain working of Steam Calorimeter	2 1115.
Outcomes: Students are able to Classify and explain working of various steam	
Coloring of various steam	
Calorimeter	
Experiment No. 9: Trial on Reciprocating Compressor	2 Hrs.
Aim and Objectives: To determine thermal and volumetric efficiency of	
reciprocating compressor.	
Outcomes: Students are able to determine thermal and volumetric efficiency of	
Succines. Students are able to determine merinar and vorametric enterency of	
Reciprocating Compressors	
Reciprocating Compressors	
Reciprocating Compressors Experiment No. 10: Industrial visit to steam power plant.	2 Hrs.
Experiment No. 10: Industrial visit to steam power plant. Aim and Objectives: To Classify and explain working of Steam Boilers.	2 Hrs.
Experiment No. 10: Industrial visit to steam power plant. Aim and Objectives: To Classify and explain working of Steam Boilers, mounting and accessories	2 Hrs.
 Experiment No. 10: Industrial visit to steam power plant. Aim and Objectives: To Classify and explain working of Steam Boilers, mounting and accessories Outcomes: Students are able to Classify and explain working of various steam 	2 Hrs.
 Experiment No. 10: Industrial visit to steam power plant. Aim and Objectives: To Classify and explain working of Steam Boilers, mounting and accessories Outcomes: Students are able to Classify and explain working of various steam Boilers, mounting and accessories 	2 Hrs.
 Experiment No. 10: Industrial visit to steam power plant. Aim and Objectives: To Classify and explain working of Steam Boilers, mounting and accessories Outcomes: Students are able to Classify and explain working of various steam Boilers, mounting and accessories. 	2 Hrs.
 Experiment No. 10: Industrial visit to steam power plant. Aim and Objectives: To Classify and explain working of Steam Boilers, mounting and accessories Outcomes: Students are able to Classify and explain working of various steam Boilers, mounting and accessories. 	2 Hrs.
 Experiment No. 10: Industrial visit to steam power plant. Aim and Objectives: To Classify and explain working of Steam Boilers, mounting and accessories Outcomes: Students are able to Classify and explain working of various steam Boilers, mounting and accessories. 	2 Hrs.

L

Textbooks:

1Thermodynamics: An Engineering Approach, 3rd Edition, Yunus Çengel and Michael, Boles, Tata McGraw Hill.

2.Basic and Applied Thermodynamics, 2nd Edition, Nag P. K., Tata McGraw-Hill.

References:

1.Fundamentals of Thermodynamics, 5th Edition, Richard E. Songtag, Claus Borgnakke and Gordon J. Van Wylen, John Wiley and Sons, Inc.

2. Thermodynamics, 4th Edition, J.P. Holman, McGraw-Hill.

3.Engineering Thermodynamics, 2nd Edition, Jones J.B. and Hawkins G.A., John Wyley and Sons.

4. Fundamentals of Engineering Thermodynamics, Moran M.S. and Shapiro H.N., John Wyley and Sons, 1988.

5. Thermodynamics, 5th Edition, K. Wark, McGraw-Hill.

Experiment wise Measurable students Learning Outcomes: At the end of each experiment the students will be able to

- 1. Determine Percentage of Carbon Residue in Lubricating Oil.
- 2. Determine Flash and Fire point of Lubricating oil
- 3. Determine Dropping point of Lubricating oil
- 4. Determine Aniline point of Lubricating oil
- 5. Demonstrate working of Steam Condensers
- 6. Demonstrate working of Steam Boilers
- 7. Demonstrate working of Boiler mountings and accessories.
- 8. Demonstrate working of Steam Calorimeter
- 9. Determine Efficiency of Reciprocating Compressor.

Title of the Course: Fluid Mechanics Lab	L	Т	Р	Credit							
Course Code: UMCH0333	0	0	2	1							
Course Pre-Requisite: The subject requires that the student should know about the various states of											
the substance, fundamental dimensions and units, vector calculus, basic fluid properties, the											
application of basic laws of mechanics, thermodynamics and orderly experimentation.											
Course Description: This course aims to impart knowledge different flow patterns, flow and pressure											
measuring devices.											
Course Objectives:											
1. To introduce students about basics of fluid properties, pressure i	neasui	remen	t technique	es/							
devices (using fluid).											
2. To study basic concepts of fluid statics, buoyancy, floating and	subme	rged t	odies and	its							
applications.											
3. To study physical significance of fluid kinematics, fluid dynami	cs and	it's a	pplications								
4. To understand the different form of governing equation related t	o fluic	l flow									
5. To enable the students to analyze and evaluate fluid mechanics	system	s by a	pplying pr	inciples							
of mathematics, science and engineering.											
6. To develop skills in the analysis of fluid systems for lifelong lea	rning.										
Course Outcomes:											
			~								
CO After the completion of the course the student should be	e Bl	oom'	s Cognitiv	e							
able to	lev	vel 1	Descriptor	,							
CO1 Define fundamental properties of Fluid.	2	1	Understan								
		(ding								
CO2 Explain the fundamental concepts of fluid mechanics	3		Applying								
CO3 Solve various fluid flow problems.	3		Applying								
CO4 Analyze the energy losses in fluid flow systems.	4		Analyzing								

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2														
CO2	3													2	
CO3	3														
CO4		2													

Assessments :

Teacher's Assessment based on – Laboratory performance, assignments, Tests, Report containing experiments (50%), Orals (50%) External examination, Performance (50%), Oral (50%).

 1	
Assessment	Marks
ISE	50
ESE	50

ISE are based on practical performed/ Quiz/ Mini-Project assigned/ Presentation/ Group Discussion/ Internal oral etc.

ESE: Assessment is based on oral examination

Course Contents:	Duration				
Experiment No. 1:					
Flow visualization by plotting of streamlines (Heleshaw's apparatus).					
Aim and Objectives: To visualise flow patterns by plotting streamlines.					
Outcomes: Demonstrate use of Heleshaw's apparatus for flow visualisation	02 11.00				
Theoretical Background: Definition of fluid, properties of fluid, types of flow.	02 Hrs				
Experimentation: Demonstration of Heleshaw's apparatus.					
Results and Discussions:					
Conclusion:					
Experiment No. 2:					
Viscosity of oil using Redwood viscometer					
Aim and Objectives: To determine viscosity is of oil a time of flow in second					
through specified hole made in a metallic piece.					
Outcomes: Viscosites for given sample with increase intemprature	00 II				
Theoretical Background: Viscosity is a property of fluid that offers the resistance to	02 Hrs				
flow it self-using redwood viscosity apparatus we can measure kinematic of oil					
Experimentation: Calculation of Viscosity using redwood viscometer					
Results and Discussions:					
Conclusion:					
Experiment No. 3: Reynold's Apparatus.					
Aim and Objectives: To perform Revnold's experiment for determination of different					
types of flow.					
Outcomes: Determination of Laminar, Transition & Turbulent flow.	II				
Theoretical Background: Types of flow.	02 Hrs				
Experimentation: Calculation of Reynold's number with Interpretation.					
Results and Discussions:					
Conclusion:					
Experiment No. 4: Verification of Bernoulli's Equation.					
Aim and Objectives: To verify Bernoulli's Equation.					
Outcomes: Practical verification of Bernoulli's Equation.					
Theoretical Background: Euler's Equation, Bernoulli's Equation & Assumptions.	02 Hrs				
Experimentation: Calculation & verification of Bernoulli's Equation.					
Results and Discussions:					
Conclusion:					
Experiment No. 5: Calibration of Venturimeter and Orificemeter.					
Aim and Objectives: To calibrate Venturimeter and Orificemeter.					
Outcomes: Calibration of Venturimeter and Orificemeter.					
Theoretical Background: Discharge measurement by Venturimeter and Orificemeter.	02 I Ima				
Experimentation: Calculation of coefficient of discharge for Venturimeter and	02 HIS				
Orificemeter.					
Results and Discussions:					
Conclusion:					
Experiment No. 6: Calibration of Rectangular & Triangular notch.					
Aim and Objectives: To calibrate Rectangular & Triangular notch.					
Outcomes: Calibration of Rectangular & Triangular notch.					
Theoretical Background: Discharge measurement by Rectangular & Triangular	02 Hrs				
notch.					
Experimentation: Calculation of coefficient of discharge for Rectangular &					
Triangular notch.					
Results and Discussions:					
---	---------------	--	--	--	--
Conclusion:					
Experiment No. 7: Orifice under steady & unsteady flow condition.					
Aim and Objectives: To calculate hydraulic coefficients.					
Outcomes: Study of steady & unsteady flow condition.					
Theoretical Background: Definition & formula of hydraulic coefficients.	02 Hrs				
Experimentation: Calculation of hydraulic coefficients.					
Results and Discussions:					
Conclusion:					
Experiment No. 8: Determination of coefficient of friction in pipes of different					
materials.					
Aim and Objectives: To determine coefficient of friction in pipes for different materials.					
Outcomes: To calculate friction factor for different pipe material.	02 11-0				
Theoretical Background: Derivation of coefficient of friction in pipes	02 Hrs				
Experimentation: Calculation for friction factor for different pipe material.					
Results and Discussions:					
Conclusion:					
Experiment No. 9: Determination of loss of friction in series pipes.					
Aim and Objectives: To determine loss of friction in series pipes.					
Outcomes: To calculate loss of friction in series pipes.					
Theoretical Background: Derivation of head loss for major and minor losses.	02 Hrs				
Experimentation: Calculation of loss of friction in series pipes.					
Results and Discussions:					
Conclusion:					
Experiment No. 10: Determination of minor losses in pipe-fittings.					
Aim and Objectives: To determine minor losses in pipe-fittings.					
Outcomes: To estimate loss of head in pipe fittings such as sudden expansion, sudden					
contraction, bend & elbow.	0 0 II				
Theoretical Background: Derivation of head loss for major and minor losses.	02 Hrs				
Experimentation: Calculation of loss of head in various pipe fittings.					
Results and Discussions:					
Conclusion:					
Textbooks:					
1. Dr. P.N. Modi and Dr. S.M. Seth, "Hydraulics and Fluid Mechanics including Hydrau	ılic				
Machines", Standard Book House.					
2. R.K.Bansal, "A Text book of Fluid Mechanics and Hydraulic Machines", Laxmi Publ	ications				
Pvt. Ltd.New Delhi.					
3. S. K.Som, Gautam Biswas, Suman Chakraborty, "Introduction to Fluid Mechanics an	d Fluid				
Machines" Tata McGraw – Hill Publication.					
4. Hydraulics Fluid Mechanics and Fluid Machines By S. Ramamrutham.					
Reference Books:					
1. White, "Fluid Mechanics", McGraw Hill Publication.					
2. Cengel Yunus A. And Cimbala John M. "Fluid Mechanics and Fundamental and applications",					
Tata Mcgraw-Hill New Delhi.					
3. Streeter, Wylie and Bedford, "Fluid Mechanics", Tata McGraw – Hill Publication.					
Experiment wise Measurable students Learning Outcomes:					
1. Able to calibrate instrument.					
2. To estimate the discharge through a pipe or open channels.					

Title of the Course: Workshop Practice II	L	Т	P	Credit				
Course Code: UMCH0334			1	2				
Course Pre-Requisite: Nil			•					
Course Description: Being a practice-oriented course, the various skills useful for making different components/iobs u	present c sing vario	ourse fo ous work	ocuses shop c	on practicing operations.				
Course Objectives:								
1. Acquire skills in basic engineering practice.								
2. Perform sand testing								
3. Perform different welding operations								
4. Develop a mould for specific application.								
Course Outcomes:								
Students should be able to								
2								
Assessments :								
Assessment Marks								
ISE 1 25								
ISE is based on practical performed/ Ouiz/ Presentation/ Gro	up Discu	ssion/Ro	ole					
plays/Assignments, etc	-r							
Distribution:								
		1						
Term work shall consist of job along with workshop D	lary comp	pletion.						
Attendance and practical performance- 10								
Workshop journal completion 10								
workshop Journal completion - To								
Industrial Visit attendance and Report -5								
Course Contents:								
1. Perform different sand testing								
a) To find Size analysis and Grain fineness Number of	of mouldi	ng sand	l.					
b) To calculate Hardness (mould/core) and Green Co	mpressiv	e streng	th of					
moulding sand	-	-						
c) To find Permeability, Moisture percentage and Cl	ay conter	nt of giv	ven					
sand	5	0						
3. Job on welding process								
4. From given component drawing, draw pattern layout.	pattern d	rawing	(with					
allowances included) and drawing of mould ready to	pour wit	h gating	g and					
rising.	-		-					
5. Industrial visit report (Industrial visit to have pra	ctical kr	nowledg	ge of					
casting forging rolling and plastic forming atc.)								

- 4. P. N. Rao, *"Manufacturing Technology- Foundry, Forming and Welding"*, Vol. I, Tata McGraw-Hill, N 3rd edition, 2009.
- 5. P. L. Jain, "*Principles of Foundry Technology*", Tata McGraw-Hill, New Delhi, 2nd Edition,2006.

6. P. C. Sharma, "A Textbook of Production Technology (Manufacturing Processes)", S. Chand & Company, 2006.

References:

- 1. O. P. Khanna, Foundry technology, Khanna Publishers, New Delhi.
- 2. Hajra Chowdhary, Elements of Workshop Technology, Vol. I, Media Promoters & Publications, Bombay
- 3. B.S. Raghuvanshi, Workshop Technology, Vol. II, Dhanapat Rai Publications, New Delhi, 10th Edition, 2000

SY B TECH SEMESTER - IV

Title of the Course: Analysis of Mechanical Elements	L	Т	Р	Credit
Course Code: UMCH0401	3	1	0	4
Course Pre-Requisite: Engineering Mechanics				

Course Description: This subject enables the student to understand the important concepts of stress and strain, their significance in concept with engineering applications and is useful while studying the Subjects like, Kinematics of Machines, Theory of machines, Dynamics of Machines.

Course Objectives:

1. To gain knowledge of different types of stresses, strains and deformation induced in Mechanical Components due to external loads.

2. To study the distribution of various stresses in Mechanical Elements.

3. To study the effect of component dimensions and shape on stresses and deformation.

Course Learning Outcomes:

CO	After the completion of the course the student should be	Bloom's Cognitive			
	able to	level	Descriptor		
CO1	Find stresses and deformations of different loads on structural members	1	Remembering		
CO2	Interpret elastic behavior of structural members.	2	Understanding		
CO3	Construct graphical solutions for given loading condition of structures.	3	Applying		
CO4	Analyze stresses developed in oblique loading condition.	4	Analyzing		
CO5	Determine the parameters of structural members under different loadings.	5	Evaluating		

CO-PO Mapping:

CO	a	b	С	d	e	f	g	Н	i	j	k	1
CO1	3											
CO2	2											
CO3		3										
CO4				2								
CO5		2										

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one EndSemester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar/Group Discussions etc. MSE: Assessment is based on 50% of course content (Normally first three modules) ESE: Assessment is based on 100% course content with60-70% weightage for course content (normally last three modules) covered after MSE.

Course Contents:	
Unit 1: Stresses and Strains	6 Hrs.
Concept of stress and strain (linear, lateral, shear & volumetric), Hooke's Law,	
Elastic constants & their relationship, Axial force diagram, stresses, strains and	
deformation in determinate and indeterminate homogeneous and composite bars	
under concentrated loads, Various strengths of material- Yield strength, Ultimate	
tensile strength, etc. Factor of Safety. Normal and shear stresses, Complementary	
shear stresses, burk modulus, interretationship between elastic constants, thermal	
Unit 2: Torsion and Shear Force & Bending Moment	7 Hrs
Torsion: Theory of torsion of shafts of circular cross section. Assumptions.	, 1115.
Derivation of torsion formulae.	
Shear Force & Bending Moment: Concept and definition of shear force and	
Bending Moment in beams due to concentrated load, UDL, uniformly varying	
loads and couples in determinate beams, Maximum bending moment & positions	
of points of contra flexure.	
Unit 3: Bending Stresses and Shear Stress in Beams	8 Hrs.
Bending Stresses: Theory of simple bending, Concept and assumptions,	1
Derivation of flexure formula, Bending stresses distribution diagram, Moment of	
resistance and section modules calculations, design of rectangular and circular	
(solid and hollow) sections; L, I and T sections	
Shear Stress in Beams: Concept and derivation of shear stress distribution	
formula, Shear stress distribution diagram for symmetrical and unsymmetrical	
section, maximum and average shear stress.	
Unit 4: Slope and Deflection of Beams	6 Hrs.
Concept and definition, relation between Bending moment, slope and deflection,	
slope and deflection by double integration method (McCauley's method), Slope	
and Deflection in determinate beams by Moment Area method and conjugate beam	
Method	7 11
Unit 5: Principal stresses and principal strain:	/ Hrs.
Normal and shear stresses on any oblique planes and concept of principal planes,	
derivation of expression for principal stresses & maximum shear stress, position of	
principal planes & planes of maximum shear. Graphical solution using Mohr's	
circle of stresses, Theories of elastic failure (Maximum principal stress theory,	
maximum shear stress theory, maximum distortion energy theory, maximum strain	
theory – their applications & limitations)	
Unit 6: Columns and Strain energy	6 Hrs.
Columns: Theory of columns – Long column and short column, Concept of	
critical load and buckling, Euler's formula for different end connections, concept	1
of equivalent length, eccentric loading, limitations of Euler's formula, Rankine	
formula, Safe load on column.	1
Strain energy: Strain energy due to axial load (gradual, sudden and impact).	1
Strain energy due to bending and torsion.	

Term Work: The term work shall consist of 6 assignments listed below.

- 1. Torsion
- 2. Shear force and bending moment diagram.
- 3. Bending and shear stresses in beams.
- 4. Deflection of beams
- 5. Principal stresses and theories of failures.
- 6. Columns.
- 7. Case study on structural analysis of assembly which includes applications of course contents.

Textbooks:

- 1. S. Ramamrutham and R. Narayanan, (2003), Strength of Materials, Dhanpat Rai Publications.
- 2. S. Timoshenko, Strength of Materials: Part-I (Elementary Theory and Problems), CBS
- 3. Ferdinand P Beer and E.R. Johnston JR. John Dewolf, Mechanics of Materials 3/e, McGraw Hill Book Company
- 4. Mechanics of Materials Hibbler 2e Pearson Education Publication

References:

- 1. Robert Norton, Machine Design, Prentice Hall
- 2. E.P. Popov, "Introduction to Mechanics of solids", Prentice Hall Publication
- 3. Singer and Pytel, "Strength of Materials", Harper and Row Publications

Unit wise Measurable students Learning Outcomes:

1. Recognize basic concepts of stress, strain and their relations based on linear elasticity.

2. Calculate stresses and deformation of a torsional bar. Develop shear and bending moment diagrams.

3. Calculate bending and transverse shear stresses.

- 4. Analyze slope and deflections of beam under combined loads.
- 4. Apply concept of Mohr's circle to compute principal stresses and angles.

6. Predict stability and buckling for a slender member column under an axial compressive

force.

Title of the Course: Machine Tools Course Code: UMCH0402	L	Т	Р	Credit		
	3	1		4		
Course Pre-Requisite: Operations performed on various machines						

Course Description: This course aims to impart knowledge of machine tools and operations performed on to it, different movements required to process the component from raw material into finished product.

Course Objectives:

1)To understand the various conventional and basic machine tools and manufacturing processes carried out on these machines for different applications.

2) To gain the basic knowledge about machine tools and its construction and principles of working.

3) To study different parts of the machine tools used in manufacturing machine shops.

4) To study the detailed assembly of manufacturing machine tools.

Course Learning Outcomes:								
СО	After the completion of the course the student should be able to	Bloom's C	ognitive					
		level	Descriptor					
CO1	The student shall be able to differentiate between metal cutting process and metal forming process.	1	Understanding					
CO2	The student shall be able to use various systems of machine tool.	2	Applying					
CO3	The student shall be able to identify machine tools for various operations performed on components.	4	Applying					
CO4	The student shall be able to select machine tool or process for simple applications	5	Applying					

со-ро м	apping	:												
со	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
CO1	2		1	1		1	1	1	2				1	
CO2	2		2	1		1	1	1	2				1	2
CO3	2	2	2	1		1	1	1		1			2	
CO4	2	2	1	2	1	1	1	1	2	1		1		2
	- L	•				•		•						

Assessments :

Teacher Assessment:√

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one EndSemester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar/Group Discussions etc. MSE: Assessment is based on 50% of course content (Normally first three modules) ESE: Assessment is based on 100% course content with60-70% weightage for course content (normally last three modules) covered after MSE.

Course Contents:	
Unit 1: Lathe, Capstan and Turret Lathe	8 Hrs
Working Principle, Specification, Principal Parts, Accessories, Attachments, Concept of	
speed, feed, depth of cut ,Operations, Numerical treatment of gear calculations, Principal	
Parts Capstan and Turret Lathe, Comparison Lathe, turret lathes & Capstan lathe, Tool	
holders, Turret Indexing Mechanism, Bar feeding Mechanism.	
Unit 2: Drilling , Boring, Shaper, Planar	8 Hrs
Specification , Construction, working of Pillar type and Radial drilling Machine. Operations	
performed on drilling Machines. Specification, Construction, working of Vertical and	
Horizontal Boring Machine. Operations (Jig Boring) performed on boring machines. Boring	
tools and Bars. Working principle of Shaper ,Specification of Shapers, Principal Parts, Crank	
and Slotted link Mechanism, Circuit for Hydraulic Shaper, Table feed Mechanism. Working	
principle of Planar ,Specification of Planar, Principal Parts, Standard or double housing	
planar, Quick return Mechanism (Belt Drive) for planar tables, Feeding Mechanism	
(Ratchet and Pawl Mechanism), Planno- Miller and its Gear Box	
Unit 3: Milling, Slotting, Broaching, Gear Manufacturing Processes	8 Hrs
Working principle, Up Milling and Down Milling, Specification of Milling Machine,	
Construction and Working Vertical Milling Machine , Construction and Working of Column	
and Knee type Milling Machine, Attachments (vertical milling attachment & Dividing Head)	
, Accessories, , Types of Milling Cutters, Operations performed. Principle of Broaching,	
Details of Broach Construction, Horizontal and Vertical Pull type broach, Continuous	
Broaching Machine, Pull Heads, Production Slotters, Principle of Gear Shaping & Gear	
Hobbing, Gear finishing processes- Gear shaving, Gear Burnishing, Gear rolling.	

Unit 4: Grinding, Honing, Lapping, Burnishing	6 Hrs
Principle, Common wheel shapes, Method of specifying grinding wheels, Selection of	
Grinding wheels, Mounting of grinding wheels, Grinding Machine - Cylindrical grinder,	
centreless grinder, Surface grinder, Accessories (Sine table, Compound vice, Magnetic and	
Electromagnetic chuck) Loading and glazing of grinding wheels, Trueing and dressing the	
grinding wheels, wheel balancing, Honing, Lapping, Burnishing,	
Unit 5: Advanced Manufacturing Technology /CNC Machines	8 Hrs
Classifications and Principle of CNC Machine (Turning Centre, Vertical Machining Centre, Horizontal Machining Centre, Multi Axis Machining centre),	
Turning Centre : Working of Machine Structure, Slideways, Spindle drive, Axis drive, Recirculating ball screw, Feedback devices(transducers, encoders), Multistation Turret ,Workholding- Chuck (3 Jaw,4 Jaw, Collet Chuck) Automatic Bar feeder, Hydraulic Tail stock, Part Catcher, Tool Holders	
Vertical and Horizontal Machining Centre - Working of Machine Structure, Slideways, Spindle drive, Axis drive, Recirculating ball screw, Feedback devices(transducers, encoders), Automatic tool changer (ATC), Automatic pallet changer (APC), Various types of tools and Tool Adapters	
Unit 6: Non Conventional Machine tools	4 Hrs
Fundamental principle, Machining unit, Tool Material, Advantage, Limitations and	
applications of Abrasive Jet Machining, Electrical Discharge Machining, Electro- chemical	
Machining, Laser beam Machining, Ultrasonic Machining, Water Jet Machining.	

- Chapman W.A.J, "Workshop Technology", Volume I, II, III, CBS Publishers and distributors, 5th Edition, 2002.
- B.S. Raghuwanshi, "Workshop Technology", Dhanpatrai Publication, 9th Edition, 1999.
- Rao, P.N., Manufacturing Technology–Metal Cutting and Machine Tools, Tata McGraw Hill, New Delhi, 2000.
- Hajra Chowdary, S.K., and Hajra Chowdary, A.K., Elements of Workshop Technology, Vol. II, Asia Publishing House, Bombay, 2003.
- Kalpakjian, S. and Steven R. Schmid, Manufacturing, Engineering & Technology, Pearson
- Production Technology by HMT, Tata McGraw-Hill, 2002
- Khanna, O.P., and Lal, M., A Text Book of Production Technology, Vol II, Dhanpat Rai & Sons, 1992.
- Fundamentals of metal cutting and Machine Tools, B.L. Juneja, G.S. Sekhon and Nitin Seth, New Age International Publishers 2nd Edition, 2003
- All about Machine Tools, Heinrich Gerling, New Age International Publishers revised 2nd Edition, 2006
- Fundamental of Machining and Machine Tools, Geoffrey Boothroyd and Winston A. Knight, CRC Taylor & Francis, Third Edition.
- Workshop Technology Vol. II by Bawa H. S. (TMH)

References:

- 1. Manufacturing Science Amitabha Ghosh and Mallik, Affiliated East West press, 2010, 2nd edition.
- 2. Modern machining Process Pandey and Shah, Tata Mc Graw Hill 2009.
- 3. Manufacturing processes for Engineering Materials by Serope kalpakijian and Steven R.Schimid pearson education 2009, 5th edition.
- 4. Materials and Processes in Manufacturing by E.Paul DeGarmo, J T Black, Ronald A Kohser, 8th Edition, Prentice Hall of India Private limited, 2004.

Title of the Course: Kinematics of Machines		L	Т	Р	Credit	
Course Code: UMCH0403		3				
Course Pre-Requisite:						
1. Engineering Mathematics 2. Engineering Physics	s 3. Engineering Mech	anics				
Course Description: Kinematics of Machines ma	ay be defined as that	branch	of En	gineer	ing-science,	
which deals with the study of relative motion betw	veen the various parts of	of a ma	chine,	and f	orces which	
act on them. The knowledge of this subject is ver	ry essential for an eng	gineer i	n desi	gning	the various	
parts of a machine.						
Course Objectives:						
1. Define various terminology related to kinematics	s of mechanism	c		1	1 1	
2. Develop competency in drawing velocity a	nd acceleration diagi	am fo	r sim	ple ar	id complex	
2 Discuss offect of friction in various mechanism						
4. Design cam with follower for different application	me					
5 Select different power transmitting elements	5115					
Course Outcomes:						
Students should be able to						
1 Explain kinematics of mechanisms						
2. Identify the mechanisms for various application	ations.					
3. Apply the principles of kinematics to mech	anisms.					
4. Analyze mechanisms using graphical meth	ods.					
Assessments :						
Teacher Assessment:						
Two components of In Semester Evaluation (IS	SE), One Mid Semes	ter Exa	mina	tion (I	MSE) and	
one EndSemester Examination (ESE) having 2	0%, 30% and 50% w	veights	respe	ctivel	у.	
Assessment	Marks		•		<u></u>	
ISE 1	10					
MSE	30					
ISE 2	10					
ESE	50					
ISE 1 and ISE 2 are based on assignment/decla	red test/quiz/semina	r/Grou	n Disa	nissio	ns etc	
MSE: Assessment is based on 50% of course of	ontent (Normally firs	st three	mod	ules)		
ESE: Assessment is based on 100% course con	tent with60-70% we	iohtao	e for c	course	content	
(normally last three modules) covered after MS	SE	1911149	101	ourse	content	
Course Contents:						
Unit 1:Basic of Kinematics					05 Hrs	
Structure Machine Link and its types kinema	atic nair (lower and	higher	Kine	matio		
chain Machanism inversion Types, kinema	aints Grubblor"s cr	itorion		rcione		
chain, mechanism, inversion, types of constraints, Grubbler's criterion, inversions						
of slider crank chain, Double slider crank chain, Four bar						
Unit 2: velocity and acceleration analysis	of Mechanisms		:		09 Hrs.	
Graphical analysis of velocity and accelera	tion for different r	nechar	lisms	using	5	
relative velocity and acceleration method, The coriolis component of acceleration,						
Velocity analysis by Instantaneous center method						
Unit 3:Friction						
Introduction of friction, Friction in pivot bearings, Friction in clutch, uniform wear						
and Uniform pressure for the clutch & bearing						
Unit 4:Cams						
Introduction, Types of cams, Types of follow	vers, Cam terminolo	ogy, D	isplac	emen	t	
diagrams, Motions of the follower, Graphical c	onstruction of cam p	rofile.				

Classification of gears, Types of gears, Spur gears - terminology, fundamental law of toothed gearing, involute and cycloidal profile, conjugate action, contact ratio, minimum number of teeth, interference and under cutting. 06 Hrs. Unit 6: Belts and Dynamometers 06 Hrs. Introduction, Type of belts, Slip and creep of belt, Tension ratio in belts, Initial tension, Open & cross belt drive, Length of belt, Power transmitted by belt, Classification of dynamometers, Study of rope brake absorption dynamometer and belt transmission dynamometer. 06 Hrs. Textbooks: 1. Rattan, S.S.: "Theory of Machines", 2 nd Edition, Tata McGraw-Hill, Publishing Co. Ltd., New Delhi, 2006. 2. Bansal, R. K., "Theory of machines", Laxmi Publications Pvt. Ltd, New Delhi 3. Rao, J.S., and Dukkipati, R.V.: "Mechanism and Machine Theory", Wiley Eastern Ltd. 4. Ghosh, A, and Malick, A. K. "Theory of Mechanisms and Machines" 3 rd Edition, East West Press Pvt. Ltd., 2000. References: 1. Shigley, J.E. and Uicker, J.J. and Pennock, G. R "Theory of Machines and Mechanisms", 3 rd Edition, Oxford University Press, 2005. 2. Bevan T., "Theory of Machines: a text book for engineering students", 3 rd Edition, CBS, New Delhi. Unit wise Measurable students Learning Outcomes: 1 Student will able to understand fundamental & various terminology associated with theory of machine 2 Student will able to understand sof friction and Power loss due to friction in bearings & Clutches 4 Student will able to understand different types of cams and followers and their motions and Construct different	Unit 5: Theory of Gears	07 Hrs.					
toothed gearing, involute and cycloidal profile, conjugate action, contact ratio, 06 minimum number of teeth, interference and under cutting. 06 Unit 6: Belts and Dynamometers 06 Introduction, Type of belts, Slip and creep of belt, Tension ratio in belts, Initial tension, Open & cross belt drive, Length of belt, Power transmitted by belt, Classification of dynamometers, Study of rope brake absorption dynamometer and belt transmission dynamometer. 06 Textbooks: 1 Rattan, S.S.: "Theory of Machines", 2 nd Edition, Tata McGraw-Hill, Publishing Co. Ltd., New Delhi, 2006. 2. Bansal, R. K., "Theory of machines", Laxmi Publications Pvt. Ltd, New Delhi 3. Rao, J.S., and Dukkipati, R.V.: "Mechanism and Machine Theory", Wiley Eastern Ltd. 4. Ghosh, A, and Malick, A. K. "Theory of Mechanisms and Machines" 3 rd Edition, East West Press Pvt. Ltd., 2000. 7 References: 1 1. Shigley, J.E. and Uicker, J.J. and Pennock, G. R "Theory of Machines and Mechanisms", 3 rd Edition, Oxford University Press, 2005. 2. Bevan T., "Theory of Machines: a text book for engineering students", 3 rd Edition, CBS, New Delhi. Unit wise Measurable students Learning Outcomes: 1 Student will able to understand fundamental & various terminology associated with theory of machine 2 Student will able to understand laws of friction and Power loss due to friction in bearings & Clutches 4 3 Student will able to understand different types of cams and followers and their motions and Con	Classification of gears, Types of gears, Spur gears - terminology, fundamental law of						
minimum number of teeth, interference and under cutting. 06 Hrs. Unit 6: Belts and Dynamometers 06 Hrs. Introduction, Type of belts, Slip and creep of belt, Tension ratio in belts, Initial tension, Open & cross belt drive, Length of belt, Power transmitted by belt, Classification of dynamometers, Study of rope brake absorption dynamometer and belt transmission dynamometer. 06 Hrs. Textbooks: 1. Rattan, S.S.: "Theory of Machines", 2 nd Edition, Tata McGraw-Hill, Publishing Co. Ltd., New Delhi, 2006. 2. Bansal, R. K., "Theory of machines", Laxmi Publications Pvt. Ltd, New Delhi 3. Rao, J.S., and Dukkipati, R.V.: "Mechanism and Machine Theory", Wiley Eastern Ltd. 4. Ghosh, A, and Malick, A. K. "Theory of Mechanisms and Machines" 3 rd Edition, East West Press Pvt. Ltd., 2000. 76 Hrs. References: 1. Shigley, J.E. and Uicker, J.J. and Pennock, G. R "Theory of Machines and Mechanisms", 3 rd Edition, Oxford University Press, 2005. 7. Bevan T., "Theory of Machines: a text book for engineering students", 3 rd Edition, CBS, New Delhi. Unit wise Measurable students Learning Outcomes: 1 Student will able to understand fundamental & various terminology associated with theory of machine 2 Student will able to understand laws of friction and Power loss due to friction in bearings & Clutches 4 Student will able to solve and determine forces and dimensions of Spur Gear. 4 Student will able to solve and determine forces and dimensions of Spur Gear. 6 Student will able to understand need and modes of power transmission and types of dynamometers	toothed gearing, involute and cycloidal profile, conjugate action, contact ratio,						
Unit 6: Belts and Dynamometers 06 Hrs. Introduction, Type of belts, Slip and creep of belt, Tension ratio in belts, Initial tension, Open & cross belt drive, Length of belt, Power transmitted by belt, Classification of dynamometers, Study of rope brake absorption dynamometer and belt transmission dynamometer. 06 Hrs. Textbooks: 1. Rattan, S.S.: "Theory of Machines", 2 nd Edition, Tata McGraw-Hill, Publishing Co. Ltd., New Delhi, 2006. 2. Bansal, R. K., "Theory of machines", Laxmi Publications Pvt. Ltd, New Delhi 3. Rao, J.S., and Dukkipati, R.V.: "Mechanism and Machine Theory", Wiley Eastern Ltd. 4. Ghosh, A, and Malick, A. K. "Theory of Mechanisms and Machines" 3 rd Edition, East West Press Pvt. Ltd., 2000. References: 1. Shigley, J.E. and Uicker, J.J. and Pennock, G. R "Theory of Machines and Mechanisms", 3 rd Edition, Oxford University Press, 2005. 2. Bevan T., "Theory of Machines: a text book for engineering students", 3 rd Edition, CBS, New Delhi. Unit wise Measurable students Learning Outcomes: 1 Student will able to understand fundamental & various terminology associated with theory of machine 2 Student will able to understand laws of friction and Power loss due to friction in bearings & Clutches 4 Student will able to understand different types of cams and followers and their motions and Construct different types of cam profile from given data 5 Student will able to understand need and modes of power transmission and types of dynamometers	minimum number of teeth, interference and under cutting.						
 Introduction, Type of belts, Slip and creep of belt, Tension ratio in belts, Initial tension, Open & cross belt drive, Length of belt, Power transmitted by belt, Classification of dynamometers, Study of rope brake absorption dynamometer and belt transmission dynamometer. Textbooks: Rattan, S.S.: "Theory of Machines", 2 nd Edition, Tata McGraw-Hill, Publishing Co. Ltd., New Delhi, 2006. Bansal, R. K., "Theory of machines", Laxmi Publications Pvt. Ltd, New Delhi Rao, J.S., and Dukkipati, R.V.: "Mechanism and Machine Theory", Wiley Eastern Ltd. Ghosh, A, and Malick, A. K. "Theory of Mechanisms and Machines" 3 rd Edition, East West Press Pvt. Ltd., 2000. References: Shigley, J.E. and Uicker, J.J. and Pennock, G. R "Theory of Machines and Mechanisms", 3 rd Edition, Oxford University Press, 2005. Bevan T., "Theory of Machines: a text book for engineering students", 3 rd Edition, CBS, New Delhi. Unit wise Measurable students Learning Outcomes: Student will able to understand fundamental & various terminology associated with theory of machine Student will able to understand velocity and acceleration diagram for a given mechanism with graphical method. Student will able to understand different types of cams and followers and their motions and Construct different types of cam profile from given data Student will able to solve and determine forces and dimensions of Spur Gear. Student will able to understand need and modes of power transmission and types of dynamometer and wells and the profile and the profile from given data 	Unit 6: Belts and Dynamometers	06 Hrs.					
 tension, Open & cross belt drive, Length of belt, Power transmitted by belt, Classification of dynamometers, Study of rope brake absorption dynamometer and belt transmission dynamometer. Textbooks: Rattan, S.S.: "Theory of Machines", 2 nd Edition, Tata McGraw-Hill, Publishing Co. Ltd., New Delhi, 2006. Bansal, R. K., "Theory of machines", Laxmi Publications Pvt. Ltd, New Delhi Rao, J.S., and Dukkipati, R.V.: "Mechanism and Machine Theory", Wiley Eastern Ltd. Ghosh, A, and Malick, A. K. "Theory of Mechanisms and Machines" 3 rd Edition, East West Press Pvt. Ltd., 2000. References: Shigley, J.E. and Uicker, J.J. and Pennock, G. R "Theory of Machines and Mechanisms", 3 rd Edition, Oxford University Press, 2005. Bevan T., "Theory of Machines: a text book for engineering students", 3 rd Edition, CBS, New Delhi. Unit wise Measurable students Learning Outcomes: Student will able to understand fundamental & various terminology associated with theory of machine Student will able to understand velocity and acceleration diagram for a given mechanism with graphical method. Student will able to understand different types of cams and followers and their motions and Construct different types of cam profile from given data Student will able to solve and determine forces and dimensions of Spur Gear. Student will able to understand need and modes of power transmission and types of dynamometers 	Introduction, Type of belts, Slip and creep of belt, Tension ratio in belts, Initial						
 Classification of dynamometers, Study of rope brake absorption dynamometer and belt transmission dynamometer. Textbooks: Rattan, S.S.: "Theory of Machines", 2 nd Edition, Tata McGraw-Hill, Publishing Co. Ltd., New Delhi, 2006. Bansal, R. K., "Theory of machines", Laxmi Publications Pvt. Ltd, New Delhi Rao, J.S., and Dukkipati, R.V.: "Mechanism and Machine Theory", Wiley Eastern Ltd. Ghosh, A, and Malick, A. K. "Theory of Mechanisms and Machines" 3 rd Edition, East West Press Pvt. Ltd., 2000. References: Shigley, J.E. and Uicker, J.J. and Pennock, G. R "Theory of Machines and Mechanisms", 3 rd Edition, Oxford University Press, 2005. Bevan T., "Theory of Machines: a text book for engineering students", 3 rd Edition, CBS, New Delhi. Unit wise Measurable students Learning Outcomes: Student will able to understand fundamental & various terminology associated with theory of machine Student will able to understand velocity and acceleration diagram for a given mechanism with graphical method. Student will able to understand different types of cams and followers and their motions and Construct different types of cam profile from given data Student will able to understand need and modes of power transmission and types of dynamometers 	tension, Open & cross belt drive, Length of belt, Power transmitted by belt,						
 belt transmission dynamometer. Textbooks: Rattan, S.S.: "Theory of Machines", 2 nd Edition, Tata McGraw-Hill, Publishing Co. Ltd., New Delhi, 2006. Bansal, R. K., "Theory of machines", Laxmi Publications Pvt. Ltd, New Delhi Rao, J.S., and Dukkipati, R.V.: "Mechanism and Machine Theory", Wiley Eastern Ltd. Ghosh, A, and Malick, A. K. "Theory of Mechanisms and Machines" 3 rd Edition, East West Press Pvt. Ltd., 2000. References: Shigley, J.E. and Uicker, J.J. and Pennock, G. R "Theory of Machines and Mechanisms", 3 rd Edition, Oxford University Press, 2005. Bevan T., "Theory of Machines: a text book for engineering students", 3 rd Edition, CBS, New Delhi. Unit wise Measurable students Learning Outcomes: Student will able to understand fundamental & various terminology associated with theory of machine Student will able to understand velocity and acceleration diagram for a given mechanism with graphical method. Student will able to understand different types of cams and followers and their motions and Construct different types of cam profile from given data Student will able to solve and determine forces and dimensions of Spur Gear. Student will able to understand need and modes of power transmission and types of dynamometers 	Classification of dynamometers, Study of rope brake absorption dynamometer and						
 Textbooks: Rattan, S.S.: "Theory of Machines", 2 nd Edition, Tata McGraw-Hill, Publishing Co. Ltd., New Delhi, 2006. Bansal, R. K., "Theory of machines", Laxmi Publications Pvt. Ltd, New Delhi Rao, J.S., and Dukkipati, R.V.: "Mechanism and Machine Theory", Wiley Eastern Ltd. Ghosh, A, and Malick, A. K. "Theory of Mechanisms and Machines" 3 rd Edition, East West Press Pvt. Ltd., 2000. References: Shigley, J.E. and Uicker, J.J. and Pennock, G. R "Theory of Machines and Mechanisms", 3 rd Edition, Oxford University Press, 2005. Bevan T., "Theory of Machines: a text book for engineering students", 3 rd Edition, CBS, New Delhi. Unit wise Measurable students Learning Outcomes: Student will able to understand fundamental & various terminology associated with theory of machine Student will able to understand fundamental & various terminology associated with theory of machine Student will able to understand different types of cams and followers and their motions and Construct different types of cam profile from given data Student will able to solve and determine forces and dimensions of Spur Gear. Student will able to understand need and modes of power transmission and types of dynamometers 	belt transmission dynamometer.						
 Rattan, S.S.: "Theory of Machines", 2 nd Edition, Tata McGraw-Hill, Publishing Co. Ltd., New Delhi, 2006. Bansal, R. K., "Theory of machines", Laxmi Publications Pvt. Ltd, New Delhi Rao, J.S., and Dukkipati, R.V.: "Mechanism and Machine Theory", Wiley Eastern Ltd. Ghosh, A, and Malick, A. K. "Theory of Mechanisms and Machines" 3 rd Edition, East West Press Pvt. Ltd., 2000. References: Shigley, J.E. and Uicker, J.J. and Pennock, G. R "Theory of Machines and Mechanisms", 3 rd Edition, Oxford University Press, 2005. Bevan T., "Theory of Machines: a text book for engineering students", 3 rd Edition, CBS, New Delhi. Unit wise Measurable students Learning Outcomes: Student will able to understand fundamental & various terminology associated with theory of machine Student will able to understand fundamental & various terminology associated with theory of machine Student will able to understand velocity and acceleration diagram for a given mechanism with graphical method. Student will able to understand different types of cams and followers and their motions and Construct different types of cam profile from given data Student will able to solve and determine forces and dimensions of Spur Gear. Student will able to understand need and modes of power transmission and types of dynamometers 	Textbooks:						
 Bansal, R. K., "Theory of machines", Laxmi Publications Pvt. Ltd, New Delhi Rao, J.S., and Dukkipati, R.V.: "Mechanism and Machine Theory", Wiley Eastern Ltd. Ghosh, A, and Malick, A. K. "Theory of Mechanisms and Machines" 3 rd Edition, East West Press Pvt. Ltd., 2000. References: Shigley, J.E. and Uicker, J.J. and Pennock, G. R "Theory of Machines and Mechanisms", 3 rd Edition, Oxford University Press, 2005. Bevan T., "Theory of Machines: a text book for engineering students", 3 rd Edition, CBS, New Delhi. Unit wise Measurable students Learning Outcomes: 1 Student will able to understand fundamental & various terminology associated with theory of machine 2 Student will able to understand velocity and acceleration diagram for a given mechanism with graphical method. 3 Student will able to understand different types of cams and followers and their motions and Construct different types of cam profile from given data 5 Students will be able to solve and determine forces and dimensions of Spur Gear. 6 Student will able to understand need and modes of power transmission and types of dynamometers 	1. Rattan, S.S.: "Theory of Machines", 2 nd Edition, Tata McGraw-Hill, Publis Ltd., New Delhi, 2006.	shing Co.					
 Rao, J.S., and Dukkipati, R.V.: "Mechanism and Machine Theory", Wiley Eastern Ltd. Ghosh, A, and Malick, A. K. "Theory of Mechanisms and Machines" 3 rd Edition, East West Press Pvt. Ltd., 2000. References: Shigley, J.E. and Uicker, J.J. and Pennock, G. R "Theory of Machines and Mechanisms", 3 rd Edition, Oxford University Press, 2005. Bevan T., "Theory of Machines: a text book for engineering students", 3 rd Edition, CBS, New Delhi. Unit wise Measurable students Learning Outcomes: Student will able to understand fundamental & various terminology associated with theory of machine Student will able to understand velocity and acceleration diagram for a given mechanism with graphical method. Student will able to understand laws of friction and Power loss due to friction in bearings & Clutches Student will able to understand different types of cams and followers and their motions and Construct different types of cam profile from given data Student will able to solve and determine forces and dimensions of Spur Gear. Student will able to understand need and modes of power transmission and types of dynamometers 	2. Bansal, R. K., "Theory of machines", Laxmi Publications Pvt. Ltd, New Delhi						
 Ghosh, A, and Malick, A. K. "Theory of Mechanisms and Machines" 3 rd Edition, East West Press Pvt. Ltd., 2000. References: Shigley, J.E. and Uicker, J.J. and Pennock, G. R "Theory of Machines and Mechanisms", 3 rd Edition, Oxford University Press, 2005. Bevan T., "Theory of Machines: a text book for engineering students", 3 rd Edition, CBS, New Delhi. Unit wise Measurable students Learning Outcomes: Student will able to understand fundamental & various terminology associated with theory of machine Student will able to understand velocity and acceleration diagram for a given mechanism with graphical method. Student will able to understand laws of friction and Power loss due to friction in bearings & Clutches Student will able to understand different types of cams and followers and their motions and Construct different types of cam profile from given data Students will be able to solve and determine forces and dimensions of Spur Gear. Student will able to understand need and modes of power transmission and types of dynamometers 	3. Rao, J.S., and Dukkipati, R.V.: "Mechanism and Machine Theory", Wiley East	ern Ltd.					
 West Press Pvt. Ltd., 2000. References: Shigley, J.E. and Uicker, J.J. and Pennock, G. R "Theory of Machines and Mechanisms", 3 rd Edition, Oxford University Press, 2005. Bevan T., "Theory of Machines: a text book for engineering students", 3 rd Edition, CBS, New Delhi. Unit wise Measurable students Learning Outcomes: Student will able to understand fundamental & various terminology associated with theory of machine Student will able to understand velocity and acceleration diagram for a given mechanism with graphical method. Student will able to understand laws of friction and Power loss due to friction in bearings & Clutches Student will able to understand different types of cams and followers and their motions and Construct different types of cam profile from given data Students will be able to solve and determine forces and dimensions of Spur Gear. Student will able to understand need and modes of power transmission and types of dynamometers 	4. Ghosh, A, and Malick, A. K. "Theory of Mechanisms and Machines" 3 rd Edi	tion, East					
 References: Shigley, J.E. and Uicker, J.J. and Pennock, G. R "Theory of Machines and Mechanisms", 3 rd Edition, Oxford University Press, 2005. Bevan T., "Theory of Machines: a text book for engineering students", 3 rd Edition, CBS, New Delhi. Unit wise Measurable students Learning Outcomes: Student will able to understand fundamental & various terminology associated with theory of machine Student will able to understand velocity and acceleration diagram for a given mechanism with graphical method. Student will able to understand laws of friction and Power loss due to friction in bearings & Clutches Student will able to understand different types of cams and followers and their motions and Construct different types of cam profile from given data Students will be able to solve and determine forces and dimensions of Spur Gear. Student will able to understand need and modes of power transmission and types of dynamometers 	West Press Pvt. Ltd., 2000.						
 Shigley, J.E. and Uicker, J.J. and Pennock, G. R "Theory of Machines and Mechanisms", 3 rd Edition, Oxford University Press, 2005. Bevan T., "Theory of Machines: a text book for engineering students", 3 rd Edition, CBS, New Delhi. Unit wise Measurable students Learning Outcomes: Student will able to understand fundamental & various terminology associated with theory of machine Student will able to understand velocity and acceleration diagram for a given mechanism with graphical method. Student will able to understand laws of friction and Power loss due to friction in bearings & Clutches Student will able to understand different types of cams and followers and their motions and Construct different types of cam profile from given data Students will be able to solve and determine forces and dimensions of Spur Gear. Student will able to understand need and modes of power transmission and types of dynamometers 	References:						
 Mechanisms", 3 rd Edition, Oxford University Press, 2005. 2. Bevan T., "Theory of Machines: a text book for engineering students", 3 rd Edition, CBS, New Delhi. Unit wise Measurable students Learning Outcomes: 1 Student will able to understand fundamental & various terminology associated with theory of machine 2 Student will able to understand velocity and acceleration diagram for a given mechanism with graphical method. 3 Student will able to understand laws of friction and Power loss due to friction in bearings & Clutches 4 Student will able to understand different types of cams and followers and their motions and Construct different types of cam profile from given data 5 Students will able to solve and determine forces and dimensions of Spur Gear. 6 Student will able to understand need and modes of power transmission and types of dynamometers 	1. Shigley, J.E. and Uicker, J.J. and Pennock, G. R "Theory of Mach	ines and					
 Bevan T., "Theory of Machines: a text book for engineering students", 3 rd Edition, CBS, New Delhi. Unit wise Measurable students Learning Outcomes: Student will able to understand fundamental & various terminology associated with theory of machine Student will able to understand velocity and acceleration diagram for a given mechanism with graphical method. Student will able to understand laws of friction and Power loss due to friction in bearings & Clutches Student will able to understand different types of cams and followers and their motions and Construct different types of cam profile from given data Students will be able to solve and determine forces and dimensions of Spur Gear. Student will able to understand need and modes of power transmission and types of dynamometers 	Mechanisms", 3 rd Edition, Oxford University Press, 2005.						
 CBS, New Delhi. Unit wise Measurable students Learning Outcomes: Student will able to understand fundamental & various terminology associated with theory of machine Student will able to understand velocity and acceleration diagram for a given mechanism with graphical method. Student will able to understand laws of friction and Power loss due to friction in bearings & Clutches Student will able to understand different types of cams and followers and their motions and Construct different types of cam profile from given data Students will be able to solve and determine forces and dimensions of Spur Gear. Student will able to understand need and modes of power transmission and types of dynamometers 	2. Bevan T., "Theory of Machines: a text book for engineering students", 3 rd	Edition,					
 Unit wise Measurable students Learning Outcomes: 1 Student will able to understand fundamental & various terminology associated with theory of machine 2 Student will able to understand velocity and acceleration diagram for a given mechanism with graphical method. 3 Student will able to understand laws of friction and Power loss due to friction in bearings & Clutches 4 Student will able to understand different types of cams and followers and their motions and Construct different types of cam profile from given data 5 Students will be able to solve and determine forces and dimensions of Spur Gear. 6 Student will able to understand need and modes of power transmission and types of dynamometers 	CBS, New Delhi.						
 Student will able to understand fundamental & various terminology associated with theory of machine Student will able to understand velocity and acceleration diagram for a given mechanism with graphical method. Student will able to understand laws of friction and Power loss due to friction in bearings & Clutches Student will able to understand different types of cams and followers and their motions and Construct different types of cam profile from given data Students will be able to solve and determine forces and dimensions of Spur Gear. Student will able to understand need and modes of power transmission and types of dynamometers 	Unit wise Measurable students Learning Outcomes:						
 machine 2 Student will able to understand velocity and acceleration diagram for a given mechanism with graphical method. 3 Student will able to understand laws of friction and Power loss due to friction in bearings & Clutches 4 Student will able to understand different types of cams and followers and their motions and Construct different types of cam profile from given data 5 Students will be able to solve and determine forces and dimensions of Spur Gear. 6 Student will able to understand need and modes of power transmission and types of dynamometers 	1 Student will able to understand fundamental & various terminology associated with	theory of					
 2 Student will able to understand velocity and acceleration diagram for a given mechanism with graphical method. 3 Student will able to understand laws of friction and Power loss due to friction in bearings & Clutches 4 Student will able to understand different types of cams and followers and their motions and Construct different types of cam profile from given data 5 Students will be able to solve and determine forces and dimensions of Spur Gear. 6 Student will able to understand need and modes of power transmission and types of dynamometers 	machine						
 graphical method. 3 Student will able to understand laws of friction and Power loss due to friction in bearings & Clutches 4 Student will able to understand different types of cams and followers and their motions and Construct different types of cam profile from given data 5 Students will be able to solve and determine forces and dimensions of Spur Gear. 6 Student will able to understand need and modes of power transmission and types of dynamometers 	2 Student will able to understand velocity and acceleration diagram for a given mechan	ism with					
 3 Student will able to understand laws of friction and Power loss due to friction in bearings & Clutches 4 Student will able to understand different types of cams and followers and their motions and Construct different types of cam profile from given data 5 Students will be able to solve and determine forces and dimensions of Spur Gear. 6 Student will able to understand need and modes of power transmission and types of dynamometers 	graphical method.						
 Clutches 4 Student will able to understand different types of cams and followers and their motions and Construct different types of cam profile from given data 5 Students will be able to solve and determine forces and dimensions of Spur Gear. 6 Student will able to understand need and modes of power transmission and types of dynamometers 	3 Student will able to understand laws of friction and Power loss due to friction in bear	ings &					
 4 Student will able to understand different types of cams and followers and their motions and Construct different types of cam profile from given data 5 Students will be able to solve and determine forces and dimensions of Spur Gear. 6 Student will able to understand need and modes of power transmission and types of dynamometers 	Clutches	-					
 Construct different types of cam profile from given data 5 Students will be able to solve and determine forces and dimensions of Spur Gear. 6 Student will able to understand need and modes of power transmission and types of dynamometers 	4 Student will able to understand different types of cams and followers and their motion	ns and					
 5 Students will be able to solve and determine forces and dimensions of Spur Gear. 6 Student will able to understand need and modes of power transmission and types of dynamometers 	Construct different types of cam profile from given data						
6 Student will able to understand need and modes of power transmission and types of dynamometers	5 Students will be able to solve and determine forces and dimensions of Spur Gear.						
dynamometers	6 Student will able to understand need and modes of power transmission and type						
•	dynamometers	~ 1					

Project Based Learning (PBL) of S.Y.B.Tech Sem II

Course Name: Kinematics of Machines (Lab)

Course Code:

Student can choose any one problem for Project Work out of four problems given below.

Problem Statements:

KOMPBLPB01: Design of Mechanism

Identify any mechanism used in practice. Draw its kinematic diagram with scale. Determine its number of links, joints and degrees of freedom. Prepare working model of the same. Also prepare CATIA model of the same.

KOMPBLPB02: Design of drive system

Identify any practical power transmission system. Identify its elements. Prepare its working model. Calculate velocity ratio. Find actual dimensions of its elements. Also prepare CATIA model of the same.

KOMPBLPB03: Design of cam

Design cam operated mechanism for alternate sorting of items from conveyor. Prepare its working model. Also prepare CATIA model of the same.

KOMPBLPB04: Analysis of power screw.

Identify any power screw application. Prepare drawing of the same. Calculate screw parameters (type of threads, lead angle, pitch, etc.). Also prepare CATIA model of the same.

2. Activities with timeline:

Sr. No.	Activity	Timeline
1	PBL awareness in class	1 st week
2	Announcement of problem/s for PBL	2 nd week
3	Team formation	3 rd week
4	Project ISE I:Synopsis presentation	5 th week
5	Completion of corrections/improvements in synopsis	6 th week
6	Project ISE II: Project Progress Presentation with Model/case study	9 th week
7	Completion of correction/improvements in Evaluation II	10 th week
8	End Semester Evaluation of Project	12 th week
9	Determining future scope for improvement	14 th week

3. Assessment Scheme:

- ISE-I
- ISE-II
- Project ESE

4. Evaluation Scheme:

- **Project ISE I :** Synopsis presentation for 5 marks (evaluation with rubrics)
- Project ISE II: Project Progress Presentation with Model/case study for 5 marks (evaluation with rubric)
- End Semester Evaluation of Project: Multimedia presentation and demonstration of working models for 15 marks out of 25 of course lab ISE (evaluation with rubrics)

Title of the Course: TURBOMACHINES								L	Т	P	Credit				
Course Code: UMCH0404									3	-	-	3			
Course	Course Pre-Requisite: Fluid Mechanics, Steam Properties														
Course Description: The course deals with rotodynamic machines like water turbines, steam turbines, centrifugal pumps, centrifugal compressors etc,. The knowledge of these devices is necessary in all types of power plants.															
Course CL Tur ent	e Lean O1: 7 boma	r ning Fo pr chine teursh	Obje epare ry t iip.	ective stud o su	s: ents icceed	of M d in	echar car	nical eers	Engin in	neering	g to e ry, te	excel	in fu al p	ndame rofess	entals of ions or
CL4 requ	O2:To uired lies.	o pro to sol	vide ve er	stude iginee	nts w ering	vith a probl	soli ems i	d fou n the	ndati rmal (on in engine	Turbo ering	omach and al	inery lso to	fund pursu	amentals ie higher
CLA Tur solu	O3:To boma utions	trai chine for tl	n stud ry, so ne rea	dents 5 as t 1 life	with to con probl	good mpreł ems	l scie nend,	entific analy	and ze, d	engin lesign	eering and c	brea reate	dth in novel	n the prod	areas of ucts and
Course	e Leai	rning	Outo	comes	8:										
CO	Afte	r the	com	pletio	n of t	the co	ourse	the s	tuden	nt show	uld be	Blo	om's	Cogn	itive
	able	to										leve	el D	escrip	otor
CO1	Expla turbo	in wo mach	rking ines.	princ	iples	and c	lassif	ficatio	on of			II	U	nderst	anding
CO2	Solve condi	for tions.	desig	n par	amete	ers of	turb	omac	hines	at spe	ecified	III	A	.pplyin	ıg
CO3	CO3Analyze the performance of turbomachines experimentallyIVAnalyzingand analytically.IVIVIV										ng				
CO4	CO4 Design the turbomachines for given specifications. VI Creating										5				
CO-PO Mapping:															
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3												3		
CO2	3	2				1		1					1	3	2
CO3		2		3	3										
CO4	1	1	3	2			1	1						3	

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one EndSemester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment

Marks

ISE 1	10	
MSE	30	
ISE 2	10	
ESE	50	
ISE 1 and ISE 2 are based on assignment/decla	red test/quiz/seminar/Group Discussion	ons etc.
MSE: Assessment is based on 50% of course c	ontent (Normally first three modules)	
ESE: Assessment is based on 100% course con	tent with60-70% weightage for course	e content
(normally last three modules) covered after MS	SE.	
Course Contents:		
Unit 1: Introduction to Turbo Machines:		07 Hrs.
Impulse momentum principle and its application	ons, Impact of jet on vanes.	
Impulse Water Turbines		
Pelton wheel: construction, principle of worki	ing, velocity diagrams and analysis,	
design aspects, governing and performance	ce characteristics, specific speed,	
selection of turbines.		
Unit 2: Depation Water Turbings		07 Ung
Classifications Francis Propeller Kaplan	Turbines constructional features	0/1115.
valocity diagrams and analysis Dagrae of Page	ation Daft tubes: types and analysis	
Cavitation: causes and remedies Specific spe	ed performance characteristics and	
coverning of reaction turbines, selection of turb	vines	
governing of reaction turbines, selection of turt	Jines.	
Unit 3: Steam Turbines:		07 Hrs.
Steam nozzles: types and applications, Equa	ation for velocity, mass flow rate,	
critical pressure ratio, effect of friction and con	ndition for maximum discharge [No	
numerical treatment].		
Steam Turbines: Classifications (Axial a	nd Radial), construction details,	
compounding of steam turbines, velocity diag	grams and analysis of Impulse and	
reaction steam turbines (single & multi	stage), governing, performance	
characteristics.		
Unit 4: Centrifugal Pumps:		07 Hrs.
Classification of rotodynamic pumps, compor	nents of centrifugal pump, types of	
heads, velocity triangles and their analysis, eff	ect of outlet blade angle, cavitation,	
NPSH, MPSH(Maximum permissible Suction	Head), Thoma's cavitation factor,	
priming of pumps, installation, specific spe	ed, performance characteristics of	
centrifugal pump, series and parallel operation	of pumps, selection of pumps.	
Unit 5: Centrifugal Compressor :		06 Hrs.
Classification of rotodynamic compressors, blo	owers, fans. Centrifugal compressor:	
Construction, flow process on T-s Diagram,	velocity diagram and Euler's work,	
slip factor and its effect on work input,	actual work input, dimensionless	
parameters, pre-whirl losses, surging, choking,	stalling characteristics.	
Unit 6: Axial Flow Compressor :		06 Hrs.
Construction, stage velocity triangles and its	analysis, enthalpy entropy diagram,	
dimensionless parameters, flow through the b	blade rows, pressure rise across the	
stage, stage losses and efficiencies, performance	e characteristics.	
Textbooks		
1 Energy Conversion Engineering Vol-III K	adambi Manohar Prasad	
2. Principles of turbomachinery. D G Shepher	rd, Mc Millan, 1969.	
3. Turbomachines. A Valan Arasu. Vikas	Publishing.	
4. A text book of Fluid Mechanics and Hy	draulic Machines, R.K.Bansal, Laxm	i

Publications

References:

- 1. Turbomachines, S.M.Yahya
- 2. Steam and Gas Turbines, R Yadav
- 3. Steam and Gas turbines, V Ganeshan
- 4. Steam turbine theory and practice, Kearton W J, Pitman
- 5. Hydraulic machines, V P Vasantdani.
- 6. Turbines, compressors, fans, S M Yahya, Tata McGraw Hill.

Unit wise Measurable students Learning Outcomes:

1. Graduates will be able to apply knowledge to solve step by step problems based on Impulse Turbine

2. Graduates will be able to draw and analyze velocity diagrams for Reaction Water Turbine

3. To analyze and solve problems on Centrifugal Pumps.

4. Graduates will demonstrate construction and working principle of Rotodynamic Air Compressor.

5. To analyze and solve problems on steam nozzle and impulse steam turbines.

6. To analyze and solve problems on reaction steam turbines.

Title of the Course: Metallurgy	L	Т	Р	Credit			
Course Code: UMCH0405	2			2			
	3	-	-	3			
Course Pre-Requisite: BME, Physics, Chemistry, Fundamental kn	owled	ge of 1	mater	ials and			
their basic properties							
Course Description: Material selection is the important part for any component. To select the appropriate material, properties have to be determined. As well as to change the properties as per the requirement, knowledge of heat treatment is also necessary. Casting is integral part of manufacturing Industry so for that knowledge of cast iron and their related grades is also required							
Course Objective:							
CO1:Explain various crystal structures and phases of metals and all	oys						
CO2:Explain equilibrium diagrams of ferrous and non ferrous meta	ls						
CO3:Explain the techniques used in manufacturing of PM components							
CO4:Compare the heat treatment processes							
CO5:Explain various destructive and nondestructive testing techniques							
Teachers Assessment:							

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISEI	10
MSE	30
ISEII	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/Moodle quiz/Topic seminar/Group Discussions, Industrial case study etc.

MSE: Assessment is based on 50% of course content (Normally first three modules) ESE: Assessment is based on 100% course content with60-70% weightage for course content (normally last three modules) covered after MSE.

Unit 1: Introduction to Metals and alloy systems	7 Hrs
Introduction to Metallic and Non-metallic materials and its classification	
(metals/alloys, polymers and composites)	
a) Imperfections in crystals, Defects-Point, Line, Planar, Volume-Slip planes and	
slip systems	
b) Alloy formation by crystallization, Nucleation and growth, Cooling curves,	
Dendritic structure and coring. c) Solid solutions and intermediate phases	
d) Phases and Gibbs phase rule	
e) Construction of equilibrium diagrams from cooling curves, Isomorphous	

system(Solid Solution), Eutectic, Partial solubility Peritectic and Intermetallic	
Compounds Lever arm principles, Long and short-range freezing	
Unit 2: Ferrous alloys	9 Hrs.
With respect to typical compositions, Properties and Applications for the following	
alloys.)	
a)Fe- Fe3C equilibrium diagram - Ferrous alloys (Plain carbon steels, cast iron)	
b) Alloy steels- Free cutting steels, HSLA high carbon low alloy steels, maraging	
steels. creep resisting steels, Stainless steels- different types. Tool steels- types,	
c) Selection of materials and Specifications based on -IS, BS, SAE, AISI, DIN, JIS	
i) Miscellaneous alloys such as super alloys, Heating element alloys. Study of low	
expansion and controlled expansion alloys, Some Advanced Materials (shape	
memory alloys, glass ceramic, perovskite structure)	
Non Ferrous Alloys	4 Hrs.
a) Copper based alloys brasses Cu- Zn, Bronzes Cu- Sn, , Cu- Be, Cu-Ni.	
b) Aluminum based alloys Al- Cu(Duralumin), Precipitation Hardening, Al-Si	
(Modification),	
c) Pb- Sn(Solders and fusible alloys),g)Sn-Sb alloys (Babbits),h) Ti (Ti-6Al-4V)	
d)Criteria for selection of materials for auto Industry aerospace, marine	
applications machine tools, refrigeration and air conditioning	
Unit 4:Mechanical Testing	5 Hrs.
a) Metallography	
b) Destructive Testing methods: Tensile, Compressive, Impact, Fatigue, Creep,	
Hardness (Rockwell, Brinell and Vickers),	
c) Non- Destructive Testing:Dye Penetrant, Magnetic, Ultrasonic, Radiography,	
Eddy Current testing.	
Unit 5: Principal of heat treatment and heat treatment of ferrous and non	12 Hrs.
Unit 5: Principal of heat treatment and heat treatment of ferrous and non ferrous alloys	12 Hrs.
Unit 5: Principal of heat treatment and heat treatment of ferrous and non ferrous alloys a) Transformation of Pearlite into austenite upon heating,	12 Hrs.
 Unit 5: Principal of heat treatment and heat treatment of ferrous and non ferrous alloys a) Transformation of Pearlite into austenite upon heating, b) Transformation of austenite into Pearlite, Bainite and Martensite on cooling. 	12 Hrs.
 Unit 5: Principal of heat treatment and heat treatment of ferrous and non ferrous alloys a) Transformation of Pearlite into austenite upon heating, b) Transformation of austenite into Pearlite, Bainite and Martensite on cooling. c) TTT –Diagram and CCT - Diagrams - significance, Effect of alloying elements 	12 Hrs.
 Unit 5: Principal of heat treatment and heat treatment of ferrous and non ferrous alloys a) Transformation of Pearlite into austenite upon heating, b) Transformation of austenite into Pearlite, Bainite and Martensite on cooling. c) TTT –Diagram and CCT - Diagrams - significance, Effect of alloying elements on TTT diagram and its significance. 	12 Hrs.
 Unit 5: Principal of heat treatment and heat treatment of ferrous and non ferrous alloys a) Transformation of Pearlite into austenite upon heating, b) Transformation of austenite into Pearlite, Bainite and Martensite on cooling. c) TTT –Diagram and CCT - Diagrams - significance, Effect of alloying elements on TTT diagram and its significance. d) Heat treatment furnaces and equipments, controlled atmosphere. 	12 Hrs.
 Unit 5: Principal of heat treatment and heat treatment of ferrous and non ferrous alloys a) Transformation of Pearlite into austenite upon heating, b) Transformation of austenite into Pearlite, Bainite and Martensite on cooling. c) TTT –Diagram and CCT - Diagrams - significance, Effect of alloying elements on TTT diagram and its significance. d) Heat treatment furnaces and equipments, controlled atmosphere. Heat Treatment Processes: 	12 Hrs.
 Unit 5: Principal of heat treatment and heat treatment of ferrous and non ferrous alloys a) Transformation of Pearlite into austenite upon heating, b) Transformation of austenite into Pearlite, Bainite and Martensite on cooling. c) TTT –Diagram and CCT - Diagrams - significance, Effect of alloying elements on TTT diagram and its significance. d) Heat treatment furnaces and equipments, controlled atmosphere. Heat Treatment Processes: a) Heat Treatment of Steels 	12 Hrs.
 Unit 5: Principal of heat treatment and heat treatment of ferrous and non ferrous alloys a) Transformation of Pearlite into austenite upon heating, b) Transformation of austenite into Pearlite, Bainite and Martensite on cooling. c) TTT –Diagram and CCT - Diagrams - significance, Effect of alloying elements on TTT diagram and its significance. d) Heat treatment furnaces and equipments, controlled atmosphere. Heat Treatment Processes: a) Heat Treatment of Steels I. Annealing – Types-Full, Partial and Sub critical annealing (Various types) and 	12 Hrs.
 Unit 5: Principal of heat treatment and heat treatment of ferrous and non ferrous alloys a) Transformation of Pearlite into austenite upon heating, b) Transformation of austenite into Pearlite, Bainite and Martensite on cooling. c) TTT –Diagram and CCT - Diagrams - significance, Effect of alloying elements on TTT diagram and its significance. d) Heat treatment furnaces and equipments, controlled atmosphere. Heat Treatment Processes: a) Heat Treatment of Steels I. Annealing – Types-Full, Partial and Sub critical annealing (Various types) and purposes 	12 Hrs.
 Unit 5: Principal of heat treatment and heat treatment of ferrous and non ferrous alloys a) Transformation of Pearlite into austenite upon heating, b) Transformation of austenite into Pearlite, Bainite and Martensite on cooling. c) TTT –Diagram and CCT - Diagrams - significance, Effect of alloying elements on TTT diagram and its significance. d) Heat treatment furnaces and equipments, controlled atmosphere. Heat Treatment Processes: a) Heat Treatment of Steels I. Annealing – Types-Full, Partial and Sub critical annealing (Various types) and purposes II. Normalising- Purposes 	12 Hrs.
 Unit 5: Principal of heat treatment and heat treatment of ferrous and non ferrous alloys a) Transformation of Pearlite into austenite upon heating, b) Transformation of austenite into Pearlite, Bainite and Martensite on cooling. c) TTT –Diagram and CCT - Diagrams - significance, Effect of alloying elements on TTT diagram and its significance. d) Heat treatment furnaces and equipments, controlled atmosphere. Heat Treatment Processes: a) Heat Treatment of Steels I. Annealing – Types-Full, Partial and Sub critical annealing (Various types) and purposes II. Normalising- Purposes III. Hardening (Hardening types), Purposes, Austempering and Martempering, 	12 Hrs.
 Unit 5: Principal of heat treatment and heat treatment of ferrous and non ferrous alloys a) Transformation of Pearlite into austenite upon heating, b) Transformation of austenite into Pearlite, Bainite and Martensite on cooling. c) TTT –Diagram and CCT - Diagrams - significance, Effect of alloying elements on TTT diagram and its significance. d) Heat treatment furnaces and equipments, controlled atmosphere. Heat Treatment Processes: a) Heat Treatment of Steels I. Annealing – Types-Full, Partial and Sub critical annealing (Various types) and purposes II. Normalising- Purposes III. Hardening (Hardening types), Purposes, Austempering and Martempering, Mechanism of quenching and Quenching media, Hardenability- Concept and 	12 Hrs.
 Unit 5: Principal of heat treatment and heat treatment of ferrous and non ferrous alloys a) Transformation of Pearlite into austenite upon heating, b) Transformation of austenite into Pearlite, Bainite and Martensite on cooling. c) TTT –Diagram and CCT - Diagrams - significance, Effect of alloying elements on TTT diagram and its significance. d) Heat treatment furnaces and equipments, controlled atmosphere. Heat Treatment Processes: a) Heat Treatment of Steels I. Annealing – Types-Full, Partial and Sub critical annealing (Various types) and purposes II. Normalising- Purposes III. Hardening (Hardening types), Purposes, Austempering and Martempering, Mechanism of quenching and Quenching media, Hardenability- Concept and methods of determination of hardenability- Grossmans critical diameter method 	12 Hrs.
 Unit 5: Principal of heat treatment and heat treatment of ferrous and non ferrous alloys a) Transformation of Pearlite into austenite upon heating, b) Transformation of austenite into Pearlite, Bainite and Martensite on cooling. c) TTT –Diagram and CCT - Diagrams - significance, Effect of alloying elements on TTT diagram and its significance. d) Heat treatment furnaces and equipments, controlled atmosphere. Heat Treatment Processes: a) Heat Treatment of Steels I. Annealing – Types-Full, Partial and Sub critical annealing (Various types) and purposes II. Normalising- Purposes III. Hardening (Hardening types), Purposes, Austempering and Martempering, Mechanism of quenching and Quenching media, Hardenability- Concept and methods of determination of hardenability- Grossmans critical diameter method and Jominy end quench test. 	12 Hrs.
 Unit 5: Principal of heat treatment and heat treatment of ferrous and non ferrous alloys a) Transformation of Pearlite into austenite upon heating, b) Transformation of austenite into Pearlite, Bainite and Martensite on cooling. c) TTT –Diagram and CCT - Diagrams - significance, Effect of alloying elements on TTT diagram and its significance. d) Heat treatment furnaces and equipments, controlled atmosphere. Heat Treatment Processes: a) Heat Treatment of Steels I. Annealing – Types-Full, Partial and Sub critical annealing (Various types) and purposes II. Normalising- Purposes III. Hardening (Hardening types), Purposes, Austempering and Martempering, Mechanism of quenching and Quenching media, Hardenability- Concept and methods of determination of hardenability- Grossmans critical diameter method and Jominy end quench test. 	12 Hrs.
Unit 5: Principal of heat treatment and heat treatment of ferrous and non ferrous alloys a) Transformation of Pearlite into austenite upon heating, b) Transformation of austenite into Pearlite, Bainite and Martensite on cooling. c) TTT –Diagram and CCT - Diagrams - significance, Effect of alloying elements on TTT diagram and its significance. d) Heat treatment furnaces and equipments, controlled atmosphere. Heat Treatment Processes: a) Heat Treatment of Steels I. Annealing – Types-Full, Partial and Sub critical annealing (Various types) and purposes II. Normalising- Purposes III. Hardening (Hardening types), Purposes, Austempering and Martempering, Mechanism of quenching and Quenching media, Hardenability- Concept and methods of determination of hardenability- Grossmans critical diameter method and Jominy end quench test. IV. Tempering Types, Structural transformations during tempering, purposes sub zero treatment	12 Hrs.
Unit 5: Principal of heat treatment and heat treatment of ferrous and non ferrous alloys a) Transformation of Pearlite into austenite upon heating, b) Transformation of austenite into Pearlite, Bainite and Martensite on cooling. c) TTT –Diagram and CCT - Diagrams - significance, Effect of alloying elements on TTT diagram and its significance. d) Heat treatment furnaces and equipments, controlled atmosphere. Heat Treatment Processes: a) Heat Treatment of Steels I. Annealing – Types-Full, Partial and Sub critical annealing (Various types) and purposes II. Normalising- Purposes III. Hardening (Hardening types), Purposes, Austempering and Martempering, Mechanism of quenching and Quenching media, Hardenability- Concept and methods of determination of hardenability- Grossmans critical diameter method and Jominy end quench test. IV. Tempering Types, Structural transformations during tempering, purposes sub zero treatment Vc) Heat treatment defects and remedies	12 Hrs.
Unit 5: Principal of heat treatment and heat treatment of ferrous and non ferrous alloys a) Transformation of Pearlite into austenite upon heating, b) Transformation of austenite into Pearlite, Bainite and Martensite on cooling. c) TTT –Diagram and CCT - Diagrams - significance, Effect of alloying elements on TTT diagram and its significance. d) Heat treatment furnaces and equipments, controlled atmosphere. Heat Treatment Processes: a) Heat Treatment of Steels I. Annealing – Types-Full, Partial and Sub critical annealing (Various types) and purposes II. Normalising- Purposes III. Hardening (Hardening types), Purposes, Austempering and Martempering, Mechanism of quenching and Quenching media, Hardenability- Concept and methods of determination of hardenability- Grossmans critical diameter method and Jominy end quench test. IV. Tempering Types, Structural transformations during tempering, purposes sub zero treatment Vc) Heat treatment defects and remedies Unit 6:Surface Treatments	12 Hrs. 4Hrs.
 Unit 5: Principal of heat treatment and heat treatment of ferrous and non ferrous alloys a) Transformation of Pearlite into austenite upon heating, b) Transformation of austenite into Pearlite, Bainite and Martensite on cooling. c) TTT –Diagram and CCT - Diagrams - significance, Effect of alloying elements on TTT diagram and its significance. d) Heat treatment furnaces and equipments, controlled atmosphere. Heat Treatment Processes: a) Heat Treatment of Steels I. Annealing – Types-Full, Partial and Sub critical annealing (Various types) and purposes II. Normalising- Purposes III. Hardening (Hardening types), Purposes, Austempering and Martempering, Mechanism of quenching and Quenching media, Hardenability- Concept and methods of determination of hardenability- Grossmans critical diameter method and Jominy end quench test. IV. Tempering Types, Structural transformations during tempering, purposes sub zero treatment Vc) Heat treatment defects and remedies Unit 6:Surface Treatments L. Surface hardening - Flame and Induction H. Chemical heat methods and Induction 	12 Hrs. 4Hrs.
 Unit 5: Principal of heat treatment and heat treatment of ferrous and non ferrous alloys a) Transformation of Pearlite into austenite upon heating, b) Transformation of austenite into Pearlite, Bainite and Martensite on cooling. c) TTT –Diagram and CCT - Diagrams - significance, Effect of alloying elements on TTT diagram and its significance. d) Heat treatment furnaces and equipments, controlled atmosphere. Heat Treatment Processes: a) Heat Treatment of Steels I. Annealing – Types-Full, Partial and Sub critical annealing (Various types) and purposes II. Normalising- Purposes III. Hardening (Hardening types), Purposes, Austempering and Martempering, Mechanism of quenching and Quenching media, Hardenability- Concept and methods of determination of hardenability- Grossmans critical diameter method and Jominy end quench test. IV. Tempering Types, Structural transformations during tempering, purposes sub zero treatment Vc) Heat treatment defects and remedies Unit 6:Surface Treatments I.Surface hardening - Flame and Induction II. Chemical heat treatments for case hardening - Carburising, Nitriding, Corabination 	12 Hrs. 4Hrs.
 Unit 5: Principal of heat treatment and heat treatment of ferrous and non ferrous alloys a) Transformation of Pearlite into austenite upon heating, b) Transformation of austenite into Pearlite, Bainite and Martensite on cooling. c) TTT –Diagram and CCT - Diagrams - significance, Effect of alloying elements on TTT diagram and its significance. d) Heat treatment furnaces and equipments, controlled atmosphere. Heat Treatment Processes: a) Heat Treatment of Steels I. Annealing – Types-Full, Partial and Sub critical annealing (Various types) and purposes II. Normalising- Purposes III. Hardening (Hardening types), Purposes, Austempering and Martempering, Mechanism of quenching and Quenching media, Hardenability- Concept and methods of determination of hardenability- Grossmans critical diameter method and Jominy end quench test. IV. Tempering Types, Structural transformations during tempering, purposes sub zero treatment Vc) Heat treatment defects and remedies Unit 6:Surface Treatments I.Surface hardening - Flame and Induction II. Chemical heat treatments for case hardening - Carburising, Nitriding, Cyaniding, Carbonitriding 	12 Hrs. 4Hrs.
 Unit 5: Principal of heat treatment and heat treatment of ferrous and non ferrous alloys a) Transformation of Pearlite into austenite upon heating, b) Transformation of austenite into Pearlite, Bainite and Martensite on cooling. c) TTT –Diagram and CCT - Diagrams - significance, Effect of alloying elements on TTT diagram and its significance. d) Heat treatment furnaces and equipments, controlled atmosphere. Heat Treatment Processes: a) Heat Treatment of Steels I. Annealing – Types-Full, Partial and Sub critical annealing (Various types) and purposes II. Normalising- Purposes III. Hardening (Hardening types), Purposes, Austempering and Martempering, Mechanism of quenching and Quenching media, Hardenability- Concept and methods of determination of hardenability- Grossmans critical diameter method and Jominy end quench test. IV. Tempering Types, Structural transformations during tempering, purposes sub zero treatment Vc) Heat treatment defects and remedies Unit 6:Surface Treatments I. Surface hardening - Flame and Induction II. Chemical heat treatments for case hardening - Carburising, Nitriding, Cyaniding, Carbonitriding III. Phosphating, Graphite coating, Tin plating, Hard Anodising, Screen Printing 	12 Hrs. 4Hrs.

1 S.H. Avner, "Introduction to physical metallurgy", Mcgraw Hill Book Company Inc, Edition, 2nd, 1974.

2 Vijendrasingh, "Physical metallurgy", Standard Publishers Delhi

3. W. D Callister, "Material science and engineering", Wiley India Pvt. Ltd., 5th Edition.

4. V.D. Kodgire, "Material science and metallurgy for engineers", Everest Publishers Pune,12th Edition

5. T.V. Rajan / C.P. Sharma, "Heat Treatments Principles and Practices", Prentice Hall of India Pvt Ltd, New Delhi

6. V Raghwan, "Material Science and Engineering", Prentice Hall of India Pvt. Ltd., New Delhi ,3rd Edition, 1995.

7. Kenneth G. Budinski, "Surface Engineering for wear resistance", Prentice Hall of India

References:

1] 1.V. Raghvan, "Materials Science & Engineering", PHI 5th Edition, Prentice-Hall of India (P) Ltd.

2. W. Callister, "Materials Science & Engineering", John Wiley & sons

3. References: 1 R.A. Higgins, "Engineering Metallurgy", Viva Books Pvt. Ltd., New Delhi, 1 st Edition

5. ASM Handbook Volume no.5 Surface Engineering

Unit wise measurable learning outcomes

After the completion of course the student should be able to

CO1:Explain various crystal structures and phases of metals and alloys

CO2:Explain equilibrium diagrams of ferrous and non ferrous metals

CO3:Explain the techniques used in manufacturing of PM components

CO4:Compare the heat treatment processes

CO5:Explain various destructive and nondestructive testing techniques

Class: S	S.Y.B.T	ech Env	vironme	ntal Eng	gineerin	ıg				L	Т	Р	Credit
Title of	e of the Course: Audit Course – I: Environmental Studies								2	-	-	Audit	
Course	e Code: UMCH461												Course
Course	Pre-Re	equisite	:									•	
Student	s shall h	nave kno	owledge	of:									
•	Science	e											
•	Techno	ology											
Course	Descri	ption:											
The ob	jective	of the c	course i	s impar	ting fu	ndamen	tal kno	wledge	and aw	arene	ss o	f Envir	onmental
science	among	students	s and in	, portan	ce of co	nservat	ion of e	nvironm	ient.				
Course	Object	ives:		-	U		U U						
At the e	end of th	e cours	e studer	nts will	be able	to							
1.	Study	scope a	and imp	oortance	e of na	tural r	esource	s, ecos	ystems,	biodi	vers	ity for	creating
	awaren	ess and	their co	nservat	ion in n	nultiple	discipli	nes.				•	C
2.	Learn v	various	types of	f polluti	on, thei	r impac	ts and c	control 1	measure	es for i	nini	mizing	pollution
	and sus	tainable	e develo	pment.		•						C C	•
3.	Unders	tand so	cial issu	es relat	ed envir	ronmen	t, enviro	onmenta	al ethics	and h	uma	n rights	s towards
	enviror	ment.										-	
4.	Study v	various	laws &	regulat	ions rel	ated to	enviror	nment a	nd its a	pplica	bilit	y in so	ciety and
	industr	ies.											
5.	Choose	one of	the sect	ors of e	nvironr	nent for	detail s	study as	project	•			
Course	Learni	ng Out	comes:										
	After	the con	npletior	ı of the	course	the stu	dent sh	ould be	9 Q	Blo	om	's Desci	riptor
CO	able t	0	L						-				
	Daga	riha na	, turol 1		imr	ortona		accusto	m fr				
CO1	Desc	ruotion	of biod	ivoreity	vith ro	spoot to	multin	lo discir	α		C	Cognitiv	e
	Evol	in cour	of blou	te solu	tions fo	spect to		tion pro	bloms		C	ognitiv	
CO2	and it	in caus	oization	strated			us ponu	uon pro	olems		U	ogintive	
	and h	.5 1111111	Inzation	strateg	105.								
CO3	Discu	iss env	vironme	ntal et	nics &	their	implen	nentatio	n for		С	ognitive	2
	better	ment of	f enviro	nment &	k huma	n life.							
	Diffe	rentiate	betwee	en requi	rement	s of lav	vs & re	egulatio	ns for		С	ognitive	è
CO4	envir	onmenta	al conse	ervation	and ap	plicabi	lity of l	egislati	ons in				
	socie	ty and in	ndustrie	s.									
CO5	Prepa	ire deta	uiled pr	oject r	eport o	n selec	cted top	pic bas	ed on		C	ognitive	e
	envir	onmenta	al issues	s/proble	ms.								
CO-PO	Mapp	ing:						-	-				
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	.0	PO11	PO12
CO1	_						2						
CO2	3												
CO3								2					
CO4						2							
CO5										2			
Assessments :													
Assessr	nents :												

ESE	50							
ESE : Assessment is based on 100% course content								
Course Contents:								
Module 1:Nature of Environmental Studies		4 Hours						
Definition, scope and importance, Multidisciplinary	y nature of environmental studies,							
Need for public awareness.								
Module 2: Natural Resources and Associated Prob	lems	4 Hours						
a) Forest resources: Use and over-exploitation, defo	restation, dams and their effects on							
forests and tribal people.								
b) Water resources: Use and over-utilization of surfac	e and ground water, floods, drought,							
conflicts over water, dams benefits and problems.								
c) Mineral resources: Usage and exploitation. Envir	ronmental effects of extracting and							
using mineral resources.								
d) Food resources: World food problem, changes cau	used by agriculture effect of modern							
agriculture, fertilizer-pesticide problems.								
e) Energy resources: Growing energy needs, ren	newable and nonrenewable energy							
resources, use of alternate energy sources.								
Solar energy, Biomass energy, Nuclear energy.								
f) Land resources: Solar energy, Biomass energy, N	Nuclear energy, Land as a resource,							
land degradation, man induced landslides, soil erosion	and desertification.							
Role of an individuals in conservation of natural resou	irces.							
Module 3: Ecosystems								
Concept of an ecosystem, Structure and function of a	an ecosystem, Producers, consumers							
and decomposers. Energy flow in the ecosystem, Ecol	logical succession.							
Food chains, food webs and ecological pyramids.		<						
Introduction, types, characteristics features, structu	are and function of the following	6 Hours						
ecosystem :-								
a) Forest ecosystem, b) Grassland ecosystem, c) Dese	rt ecosystem, d) Aquatic ecosystems							
(ponds, streams, lakes, fivers, oceans, estuaries).								
Module 4: Biodiversity and its conservation	am diversity							
Rio geographical classification of India	em diversity.							
Value of biodiversity: consumptive use productive	a use social ethical aesthetic and	6 Hours						
ontion values	, use, social, ethical, aesthetic and	0 110015						
India as a mega- diversity nation. Western Ghat as a h	piodiversity region							
Hot-spot of biodiversity. Threats to biodiversity hab	itat loss poaching of wildlife man-							
wildlife conflicts. Endangered and endemic species of	f India. Conservation of biodiversity:							
In-situ and Ex-situ conservation of biodiversity.								
Module 5:Environmental Pollution		6 Hours						
Definition: Causes, effects and control measures of:	Air pollution, Water pollution, soil							
pollution, Marine pollution, Noise pollution, Therma	al pollution, Nuclear hazards. Solid							
waste Management: Causes, effects and control meas	sures of urban and industrial wastes.							
Role of a individual in prevention of pollution.								
Module 6: Social Issues and the Environment		8 Hours						
Disaster management: floods, earthquake, cyclone	e, tsunami and landslides. Urban							
problems related to energy Water conservation,	rain water harvesting, watershed							

management	t, Resettlement and rehabilitation of people; its problems and concerns.						
Environmental ethics: Issue and possible solutions. Global warming, acid rain, ozone							
layer depletion, nuclear accidents and holocaust. Wasteland reclamation.							
Consumerism and waste products.							
Module 7:E	nvironmental Protection	8 Hours					
From Unsus	tainable to Sustainable development.						
Environmen	tal Protection Act.						
Air (Prevent	ion and Control of Pollution) Act.						
Water (Preve	ention and control of Pollution) Act.						
Wildlife Pro	tection Act.						
Forest Conse	ervation Act.						
Population C	Growth and Human Health, Human Rights.						
Textbooks:							
1. Envi	ironmental Studies by Dr. P.D.Raut (Shivaji University, Kolhapur)						
References:							
1. Mill	er T.G. Jr., Environmental Science. Wadsworth Publications Co.(TB).						
2. Odum, E.P.1971, Fundamentals of Ecology, W.B.Saunders Co. USA, 574p							
3. Triv	edi R.K. Handbook of Environmental Laws, Rules, Guidelines, Compliances and	d					
Stan	dards, vol. I and II, Environmental Media (R)						
Unit wise Learning Outcomes:							
At the end of	f the course the students will be able to						
UO 1							
	Describe scope and importance of environmental studies.						
UO 2	Describe types of natural resources, their use and conservation.						
UO 3	Explain structure and functions of ecosystem, their types and importance.						
UO 4	Discuss biodiversity, endangered species and methods of biodiversity conserva-	tion.					
UO 5	Explain causes, effects and solutions to pollution problems.						
UO 6	Discuss environmental ethics and various social issues related to environment.						
UO 7	Discuss laws and regulations for conservation of environment.						

Title of the Course: Workshop Practice III	L	Т	Р	Credit					
Course Code: UMCH0431									
			2	1					
Course Pre-Requisite: Machine Drawing Fundamentals, Manufacturing Process, Machine Tools,									
Operations performed on various machines									
Course Description: .This course is designed to provide the students with hands on knowledge and									
the practical learning experience on various machine tools and operations on it.									
Course Objectives:									

To practice basic metal cutting processes and acquire elementary skills.

СО	After the completion of the course the student should	Bloom's	Cognitive
	be able to		
		level	Descriptor
CO1	Explain the fundamentals of metal removal process	2	
CO2	Explain construction and working of conventional machine tools	2	
CO3	Plan the sequence of operations required	3	
C04	Perform various machining operations.	5	

CO-PO Mapping:														
СО	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1													
CO2		2												
CO3				2										
CO4						2		2				2		3
	•													

Assessments : Teacher Assessment:

Assessment	Marks
ISE	25
ESE(POE)	25

ISE: Assessment is based on 100% lab work.

ESE(POE): Assessment is based on 100% job performed and oral conducted.

Course	Contents:
--------	-----------

Introduction to basic operations and tools	2 hrs							
Reading the component Drawing, selecting and preparing operation sequence								
Manufacturing of component on lathe, Milling and Drilling Machine. Job consists of operations such as turning, facing, grooving, Taper turning, Threading, Knurling, centre drilling etc.	14 hrs							
Demonstration of Surface grinder, Cylindrical grinder followed by assignment	2 hrs							
Demonstration of wheel truing , dressing on grinding wheels followed by assignment								
Demonstration of adjusting stroke on shaper/ Planer Machine followed by assignment	2 hrs							
Demonstration of Turning Centre followed by assignment	4 hrs							
Note:-								
• Students should prepare setup wise working drawing showing all the details in work diary/operation sheet.								
• Dimensional accuracy is of prime importance.								
• Student must maintain work diary/operation sheet showing regular progress in the semester.								
 The practical oral examination(POE) shall include manufacturing of one assigned job & its operation on lathe machine followed by an oral examination. 								
Textbooks:								
 Workshop Technology Vol. I & II by Hajra Chaudhary, (Media Promoters & Publishers Pvt. Ltd.) Workshop Technology Vol. I, II and III by W.A.J. Chapman, (ELBS) Workshop Technology Vol. II by Bawa H. S. (TMH) A Course on Workshop Technology – Vol. 1 by B. S. Raghuvanshi; (Dhanpat Rai & Co.) Workshop Technology Vol. III – Chapman (ELBS) 								

Title of the Course: Kinematics of Machines Lab	L	Т	Р	Credit					
Course Code: UMCH0432			2	1					
Course Pre-Requisite:									
1. Engineering Mathematics 2. Engineering Physics 3. Engineering Mechanics									
Course Description: Kinematics of Machines may be defined as that bra	anch of	Engin	eering	g-science,					
which deals with the study of relative motion between the various parts of a machine, a									
which act on them. The knowledge of this subject is very essential for an engineer in desi									
various parts of a machine.									
Course Objectives:									
1. Define various terminology related to kinematics of mechanism	2								
2. Develop competency in drawing velocity and acceleration diagram	n for	simple	and	complex					
2 Disaura effect of friction in various machanism									
4. Design com with follower for different applications									
4. Design call with follower for unrefent applications									
Course Outcomes:									
Students should be able to									
5 Explain kinematics of mechanisms									
6. Identify the mechanisms for various applications.									
7. Apply the principles of kinematics to mechanisms.									
8. Analyze mechanisms using graphical methods.									
Assessments ·									
Teacher Assessment.									
One component of In Semester Evaluation (ISE)									
Assessment Marks									
ISE 25									
ISE									
Discussion/Internal oral atc	FIESEI	itation		up					
Discussion/ Internal oral etc.									
Course Contents:									
Experiment No. 1:Study of Basic of Kinematics				02 Hrs.					
Aim and Objectives: To study basic concept of kinematics and ver	rify the	e diffe	rent						
laws related to mechanisms									
Case Study on Basic of Kinematics									
Outcomes: Students should be able to understand different types of	mecha	anisms	and						
their applications									
Theoretical Background: Basic of Kinematics									
Experiment No. 2:- Verification of ratio of angular velocities of a	shafts	conne	cted	02 Hrs.					
by Hooke's joint									
Aim and Objectives: To study the theory of Hooke's joint and	to ver	ify the	e of						
angular velocities of driving and driven shafts using model									
Outcomes: Students should be able to understand the Hooke's joint									
Theoretical Background: Theory of Hooke's joint									
Experimentation: Calculation of ratio of angular velocities of dri	iving a	und dri	iven						
shafts using model									
Results and Discussions: Compare Analytical & Experimental	ratio o	of ang	ular						
velocities of driving and driven shafts		-							
Conclusion: Drawn conclusion at what value of Θ the ratio of angu	ular ve	locitie	s of						
driving and driven shafts is maximum, minimum & unity									

Experiment No. 3: Velocity & Acceleration analysis of mechanisms by Relative	04 Hrs.						
Velocity Method							
Aim and Objectives: To study basic theory and analysis of velocity &							
Acceleration in mechanism							
Outcomes: Analyze velocity and acceleration of mechanisms by vector and graphical							
methods							
Theoretical Background: Velocity and acceleration analysis of Mechanisms							
To draw velocity and acceleration diagram for a simple mechanism and coriolis							
to draw velocity and acceleration diagram for a simple mechanism and coriolis component acceleration.							
Experiment No. 4: Velocity analysis of mechanisms by instantaneous centre	02 Hrs.						
method.							
Aim and Objectives: To study basic theory and analysis of velocity by							
instantaneous centre method.							
Outcomes: Analyze velocity by instantaneous centre method							
Theoretical Background: Velocity analysis by instantaneous centre method.							
To draw velocity diagram using instantaneous centre method							
Experiment No. 5: Construction of cam profile by considering different	02 Hrs						
follower motion	02 111 5.						
Aim and Objectives: To study basic of cam & follower and Construct different							
types of cam profile from given data							
Outcomes: Students should be able to design cam with follower for different applications							
Theoretical Background: Cams-To draw the layout of cam profile for different							
follower by considering different follower motion							
Tonower by considering different follower motion							
Aim and Objectives: To study the sloop & creep of helts							
Aim and Objectives: 10 study the sleep & creep of belts							
Outcomes: Students should be able to understand sleep & creep of belts							
Theoretical Background: Theory of Belt Drive Experimentation: Calculation of percentage of sleep and green using emperatus							
Experimentation: Calculation of percentage of sleep and creep using apparatus							
Results and Discussions: Compare Sleep & Creep percentage for different load							
Conclusion: Find out effect of sleep and creep on belt drive							
Experiment No. 7: Study of Rope Brake Dynamometer	02 Hrs.						
Aim and Objectives: To conduct load test on rope brake using an electrical motor							
and to find efficiency of the motor							
Outcomes: Students should be able to understand construction and working of rope							
brake dynamometer							
I neoretical Background: Theory of dynamometer							
Experimentation: Calculation of input power, output power and mechanical							
efficiency							
Results and Discussions: Compare efficiency of motor for different load							
Conclusion: Find out effect of load on efficiency of the motor							
Experiment No. 8: Study of governor characteristics of porter governor	02 Hrs.						
Aim and Objectives: To study types & working of various governors &							
characteristics of porter governor							
Outcomes: Students should be able to understand types & working of various							
governors & characteristics of porter governor							
Theoretical Background: Theory of governor							
Experimentation: Calculation of height, angle, controlling force, centrifugal							
torce, mean force of porter governor							
Results and Discussions: Compare the result for different speed							
Conclusion: write the conclusion about stability of porter governor							

- 5. Rattan, S.S.: "Theory of Machines", 2 nd Edition, Tata McGraw-Hill, Publishing Co. Ltd., New Delhi, 2006.
- 6. Bansal, R. K., "Theory of machines", Laxmi Publications Pvt. Ltd, New Delhi
- 7. Rao, J.S., and Dukkipati, R.V.: "Mechanism and Machine Theory", Wiley Eastern Ltd.
- 8. Ghosh, A, and Malick, A. K. "Theory of Mechanisms and Machines" 3 rd Edition, East West Press Pvt. Ltd., 2000.

References:

- 3. Shigley, J.E. and Uicker, J.J. and Pennock, G. R.. "Theory of Machines and Mechanisms", 3 rd Edition, Oxford University Press, 2005.
- 4. Bevan T., "Theory of Machines: a text book for engineering students", 3 rd Edition, CBS, New Delhi.

Experiment wise Measurable students Learning Outcomes:

1 Students should be able to understand different types of mechanisms and their applications

- 2 Students should be able to understand the Hooke's joint
- **3** Analyze velocity and acceleration of mechanisms by vector and graphical methods
- **4** Analyze velocity by instantaneous centre method

5 Students should be able to design cam with follower for different applications

6 Students should be able to understand sleep & creep of belts

7 Students should be able to understand construction and working of rope brake dynamometer

8 Students should be able to understand types & working of various governors & characteristics of porter governor

Title of the Course: TURBOMACHINES LAB	L	Т	P	Credit
Course Code: UMCH0433	-	-	2	1

Course Pre-Requisite: Fluid Mechanics

Course Description:

The course aims at experimentation on turbo machines like Pelton wheel, Francis turbine etc,.

Course Learning Objectives:

CLO1: To provide the students the fundamentals and working principles of pumps, compressors and turbines.

CLO2:To train students with good scientific and engineering breadth in the areas of Turbomachinery, so as to comprehend, analyze, design and create novel products and solutions for the real life problems

Course Learning Outcomes:

CO	After the completion of the course the student should be	Bloom's Cognitive		
	able to	level	Descriptor	
CO1	Explain working principles and classifications of turbomachines	II	Understanding	
CO2	Analyze the performance of turbomachines experimentally and analytically.	IV	Analyzing	

CO-PO Mapping:

CO	PO1	PO2	PO3	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2												3		
CO2		2			3										2	1

Assessments :

Teacher Assessment:

One component of In Semester Evaluation (ISE)

Assessment	Marks
ISE	25

ISE are based on practical performed/ Quiz/ Mini-Project assigned/ Presentation/ Group Discussion/ Internal oral etc.

Course Contents:	
Experiment No. 1: Trial on Pelton wheel turbine.	02Hrs
Aim and Objectives: To determine hydraulic, mechanical and overall efficiency	
of Pelton Wheel	
Outcomes: The students will be able to understand the performance of Pelton	
wheel.	
Experiment No. 2: Trial on Francis turbine	02 Hrs
Aim and Objectives: To determine overall efficiency of Francis Turbine	
Outcomes: The students will be able to understand the performance of Francis	

turbine.					
Experiment No. 3: Trial on Centrifugal nump	02 Hrs				
Aim and Objectives: To determine overall efficiency of Centrifugal pump	02 2220				
Outcomes: The students will be able to understand the performance of Centrifugal					
pump.					
Experiment No. 4: Trial on Centrifugal blower	02 Hrs				
Aim and Objectives: To determine overall efficiency of Centrifugal blower					
Outcomes: The students will be able to understand the performance of Centrifugal					
blower.					
Experiment No. 5: Study and demonstration of steam turbines	02 Hrs				
Aim and Objectives: To study and demonstrate the working principle of steam					
turbine					
Outcomes: The students will be able to understand and demonstrate the working					
principles of steam turbines.					
Experiment No. 6: Study and domonstration of various numps like Coor	02 Ung				
numn submersible numn reciproceeting numn etc	02 111 5				
Outcomes: To explain the working principle of various pumps like Gear pump					
submersible pump, reciprocating pump etc					
Textbooks:					
5. Energy Conversion Engineering Vol-III, Kadambi, Manohar Prasad					
6. Principles of turbomachinery, D G Shepherd, Mc Millan, 1969.					
7. Turbomachines, A Valan Arasu, Vikas Publishing.					
8. A text book of Fluid Mechanics and Hydraulic Machines, R.K.Bansal, Laxn					
Publications					
7 Turbomachinas S M Vahva					
7. Turboniacinites, S.W. Fanya 8. Steam and Gas Turbines, P. Vaday					
9 Steam and Gas turbines, N Fadav					
10 Steam turbine theory and practice Kearton W I Pitman					
11. Hydraulic machines, V P Vasantdani.					
12. Turbines, compressors, fans, S M Yahya, Tata McGraw Hill.					
Experiment wise Measurable students Learning Outcomes: At the end of each					
experiment the students will be able to					
1. Plot characteristics of Pelton wheel					
2. Plot characteristics of Francis turbine					
3. Plot characteristics of Centrifugal pump					
4. Plot characteristics of Centrifugal blower					
5. Demonstrate the working principle of steam turbines					
6. Demonstrate the working principle of various pumps.					

Title of the Course: Computer Graphics Lab	L	Т	Р	Credit				
Course Code: UMCH0434	-	-	2	1				
Course Pre-Requisite: Basics of C Language programming, Engineering Graphics.								
Course Description:								

Course Objectives:

1) To introduce student about computer graphics leading to the ability to understand contemporary 2) To study basic concepts of computer graphics techniques, focusing on 3D modeling, Image synthesis

3) To study physical significance of Curves and Surfaces

4) To study need for hidden surface removal.

Course Learning Outcomes:

CO	After the completion of the course the student	Bloom's Cognitive			
	should be able to	level	Descriptor		
CO1	To Acquire the knowledge of basics of computer	1	Cognitive		
	graphics.		(Knowledge)		
CO2	To Apply basic programming in C for line, rectangle,	1	Cognitive		
	circle etc for different shapes.		(Knowledge)		
CO3	To recognize the importance of using three	1	Cognitive		
	dimensional transformations like translation, scaling		(Knowledge)		
	and rotating.				
CO4	To Analyzing the hidden unwanted parts in graphics	2	Psychomotor		
	and do the program on animation.		(Skill)		
CO5	To choose the different of curves and surfaces while	2	Psychomotor		
	drawing CAD models.		(Skill)		

CO-PO Mapping:

PO	1	2	3	4	5	6	7	8	9	10	11	12
CO1		\checkmark										
CO2			\checkmark									
CO3												
CO4		\checkmark										
CO4						\checkmark						
CO5								\checkmark				
CO6												

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one EndSemester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks					
ISE	25					
ESE(POE)	25					
ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar/Group Discussions etc.						
MSE: Assessment is based on 50% of course content (Normally first three modules)						
ESE: Assessment is based on 100% course content with 60-70% weightage for course conte						

(normally last three modules) covered after MSE.	
Course Contents:	
Unit 1:- Introduction and background of Computer Graphics, Need of Computer Graphics, Importance of Computer Graphics in the area of CAD/CAM/CAE,	(07)Hrs.
Display devices: Refresh Cathode ray Tubes, Random Scan and Raster Scan monitors, Colour CRT Monitors, Direct view Storage Tubes, Continuous Refresh and Storage display, LED and LCD Monitors.	
Unit 2:- Graphic primitives: Points & Lines, Line drawing Algorithm, DDA and Bresenham's Algorithm. Fill Algorithm: Scan-Line Polygon Fill algorithm, Boundary Fill Algorithm, Flood Fill Algorithm, Seed fill algorithm. Attributes of primitives: Line style, Type, Width, Colour, Character Attributes, Area Filling.	(07)Hrs.
Unit 3:-	(07)Hrs.
Analytical & Synthetic curve: C0, C1 & C2 Continuity, Convex hull, Parametric & non parametric representation of curves. Analytic curves: Circle, Ellipse, Parabola, Hyperbola, Splines: linear, quadratic, cubic, hermite, Bezier curves, Synthetic Curves: Circle and ellipse drawing, Parametric and Breshenham's algorithm.	
Unit 4:- 2D Transformation: Basic transformation- Translation, Scaling, Rotation, Reflection, Twist, Matrix Representation, Composite Transformations.	(04) Hrs.
3D Transformation: Basic Transformations, 3D Display parallel & perspective projection.	
Unit 5:- Viewing: Viewing world co-ordination system, Normalized co-ordinate system, Device/Image co-ordination system, Window definitions, View port definitions, Viewing transformation.	(05) Hrs.
Clipping: Point clipping, Line clipping, Cohen- Sutherland clipping, Midpoint clipping method, Sutherland and Hodgeman Clipping.	
Lab Work : All the algorithms are to be practiced in the computer Programming using suitable programming language Textbooks:	Laboratory
1 Computer Graphics-Donald hearn and M Pauline Baker-Prentice Hall of India Pu	/t I t d
2. Introduction to Computer Graphics N. Krishnamurhy, TMH Publication	/ Llu.
2. Introduction to computer Graphics – N. Krisinandiny - Twin Publication.	
1. Computer Graphics –Harrington S. – TMH Publication.	

Title of	f the Course: Metallurgy Lab	L	Т	P	Credit					
Course	e Code: UMCH0435		-	2	1					
Course	Course Pre-Requisite: BME, Physics, Chemistry									
Course	Description:									
Mater	Material selection is the important part for any component. To select the appropriate									
materi	al properties have to be determined. As well as to change	the p	roper	ties a	s per					
the rec	uirement knowledge of heat treatment is also necessary.	Also ł	by ide	entifyi	ing					
micros	tructures one can determine the phases and composition									
Course	e Objective:									
CO1: T	o describe solidification behavior of the material and predict	their r	nicros	structu	ire					
CO2: T	o determine different properties like strength, elongation	, toug	hness	s, har	dness					
by doin	ng tests like Tensile test, Impact test, Hardness test.		_							
CO3:To	study different NDT techniques for determining surface	and s	ub su	rface	cracks					
CO4:To	study various heat treatment processes and their micro	struct	ural	chang	ges.					
CO5: T	o study the concept of hardenability									
Course	e Learning Outcomes:									
CO	After the completion of the course the student should be	Blo	om's	Cogn	itive					
	able to	leve	el D	escrip	otor					
CO1	To describe solidification behavior of the material and	Ι	K	nowle	dge					
	predict their microstructure									
CO2	To determine different properties like strength,	II	K	nowle	dge					
	elongation, toughness, hardness by doing tests like									
	Tensile test, Impact test, Hardness test.									
CO3	CO3To choose different NDT techniques for determiningIIKnowledge									
	surface and sub surface cracks									
CO4 To explain various heat treatment processes and their			K	nowle	dge					
	micro structural changes									
CO5	To explain the concept of hardenability	II	K	nowle	dge					

CO-PO Mapping:

CO	a	b	c	d	e	f	g	h	i	j	k
CO1	2										
CO2	3										
CO3	2										
CO4	2										
CO4	2	3									
CO5	2										

Assessments :

Teacher Assessment:

One component of In Semester Evaluation (ISE) and one End Semester Examination (ESE) having 50%, and 50% weights respectively.

Assessment	Marks	
ISE	50	
ESE	50	
ISE are based on practical performed/ Quiz/ Mini-Project assigned/ Presentation/ Group		
--	----------------	--
Discussion/ Internal oral etc.		
ESE: Assessment is based on oral examination		
Course Contents:		
Experiment No. 1:Study Metallurgical Microscope	2- Hrs.	
Aim and Objectives: To study the construction and working of metallurgical		
microscope		
Outcomes: The student should be able to explain the working and construction of		
metallurgical microscope		
Experiment No. 2: Tensile testing of M.S. and CI	4- Hrs.	
Aim: To determine the properties like elongation, tensile strength, breaking stress,		
percentage reduction in area on steel and cast iron sample.		
Outcome: By determining the properties like strength, toughness and ductility he is		
able to select the appropriate material		
Theoretical background: Stress, strain calculation		
Experimentation: Marking gauge length according IS standards. Applying load		
gradually under tensile loading conditions under the material breaks		
Results and discussion: Tensile strength, ductility, yield point, breaking stress		
Conclusion: The material is ductile /brittle		
Experiment No.3 – Hardness Testing (Rockwell and Brinell)	2 Hrs.	
Aim: To determine the hardness of given material also relation between hardness		
and other mechanical properties.		
Outcome : At the end of the experiment the student should be able to find out		
hardness number of given material.		
Theoretical background: Procedure for operating the Brinell Hardness testing		
Machine and Rockwell Hardness Testing Machine and Hardness number		
calculation		
Experimentation: To operate the hardness testing machine to determine hardness		
number.		
Results and Discussion:Hardness Number		
Experiment No. 4: Impact testing(Izod and Charpy) of M.S. Brass and Al	2- Hrs.	
Allov		
Aim: To determine toughness under impact loading conditions.		
Outcome: The student should be able to determine Toughness value under impact		
loading conditions.		
Theoretical background: Toughness under impact loading conditons, DBTT		
Experimentation: Material is prepared according to Izod and Charpy		
specifications. It is placed on impact testing machine and energy required to break		
the specimen is calculated.		
Results and Discussion : Toughness value for different material and type of break		
Conclusion: Ductile material behave differently in different conditions		
Experiment No. 5: Demonstration of N.D.T. (Minimum two of different NDT	2 Hrs.	
tests		
Aim: To determine surface and subsurface cracks.		
Outcome: The student should be able to use different NDT methods.		
Experimentation: Dye penetrant test :cleaning,penetrant application and		
developer application		
Results and Discussion : Material is having crack and also location can also be		
found out.		

Experiment No. 6: Preparation of sample by metallography and examination	4 Hrs.
of microstructure of steels and Cast Irons	
Aim: Prepare the sample by metallography and identify phases and their	
percentages.	
Outcome: Students should able to prepare Metallography samples for	
Micro structural analysis and Identify phases.	
Theoretical background : Iron iron carbide diagram and their phases	
Experimentation: Metallography and use of microscope	
Result and discussion: Identification of phases and their relative percentages and	
their relation with carbon %	
Conclusion: The carbon % of given sample is	
Experiment No.7: Examination of microstructure of Non ferrousalloys (Brass,	2 Hrs.
Duralimin, Babbit)	
Aim: To identify phases of the given non ferrous sample.	
Outcome: At the end of the experiment the student should be able to find out	
phases in the non ferrous sample and their relation with the properties	
Theoretical Background: Knowledge of non ferrous alloys and their phases.	
Experimentation: To observe the sample under microscope	
Experiment No.8- Heat treatment of steels (Annealing, Normalizing, Hardening	2 Hrs
on medium/ high carbon steels)	
Aim: To observe various heat treatment processes.	
Outcome: At the end of the experiment the students should able to understand	
effect of heat treatment on mechanical properties of metals.	
Experiment : To heat the sample to require temperature and carry out heat treatment	
processes.	
Experiment No.9 - Jominy end quench test for hardenability	2 Hrs
Aim: To determine effect of quenching media, rate of cooling on hardness number.	
Outcome: The students should able to calculate hardenability of steel	
Theoretical Background: Concept of hardenability.	
Experimentation: Jominy end quench test set up, medium carbon steel sample,	
cooling media is required.	
Results and discussion: Hardness depends upon rate of cooling, effect of grain	
size, carbon content, alloying element.	
Experiment No. 10) Observation of various industrial heat treatments processes	4 Hrs
during industrial visits	
Aim: To observe surface heat treatment processes like carburising, nitriding, Induction	
Hardening processes	
Outcome: At the end of visit the student should have brief knowledge of heat	
treatments.	
Theoretical Background: Concept of surface hardening processes.	
Experiment No.11: One seminar on any advanced materials as well as selection	2Hrs.
of materials by referring at least 5 research papers from standard journals.	
Aim: To be aware of advanced materials and material selection process.	
Outcome : At the end of presentation, the should have knowledge recent advanced	
materials and their selection process.	
Textbooks:	
1. I S.H. Avner, "Introduction to physical metallurgy", Mcgraw Hill Book Company Inc,	
Edition, 2nd, 1974.	
2 Vıjendrasingh, "Physical metallurgy", Standard Publishers Delhi	

3. W. D Callister, "Material science and engineering", Wiley India Pvt. Ltd., 5th Edition.

4. V.D. Kodgire, "Material science and metallurgy for engineers", Everest Publishers Pune,12th Edition

5. T.V. Rajan / C.P. Sharma, "Heat Treatments Principles and Practices", Prentice Hall of India Pvt Ltd, New Delhi

. 6. V Raghwan, "Material Science and Engineering", Prentice Hall of India Pvt. Ltd., New Delhi ,3rd Edition, 1995..

References:

1] 1.V. Raghvan, "Materials Science & Engineering", PHI 5th Edition, Prentice-Hall of India (P) Ltd. 2. W. Callister, "Materials Science & Engineering", John Wiley & sons

3. References: 1 R.A. Higgins, "Engineering Metallurgy", Viva Books Pvt. Ltd., New Delhi, 1 st Edition

5. ASM Handbook Volume no.5 Surface Engineering

Experiment wise Measurable students Learning Outcomes:

1.At the end of the expt. No.1 the student should be able to explain the working and construction of metallurgical microscope

2.At the end of the experiment 2, student should be able to determine properties like Tensile Strength, ductility, yield point, breaking stress.

3. At the end of the experiment the student should be able to find out hardness number of given material

4. The student should be able to determine Toughness value under impact loading conditions

5. The student should be able to apply different NDT technique.

6. Students should able to prepare Metallography samples for Micro structural analysis and Identify phases

7. At the end of the experiment the student should be able to find out phases in the non ferrous sample and their relation with the properties

8. At the end of the experiment the students should able to understand effect of heat treatment on mechanical properties of metals.

9: The students should able to calculate hardenability of steel

10. At the end of visit the student should have brief knowledge of heat treatments

11. At the end of presentation, the students should have knowledge of recent advanced materials and their selection process